

Abu Dhabi University

CEN 466 - Advanced Digital System Design

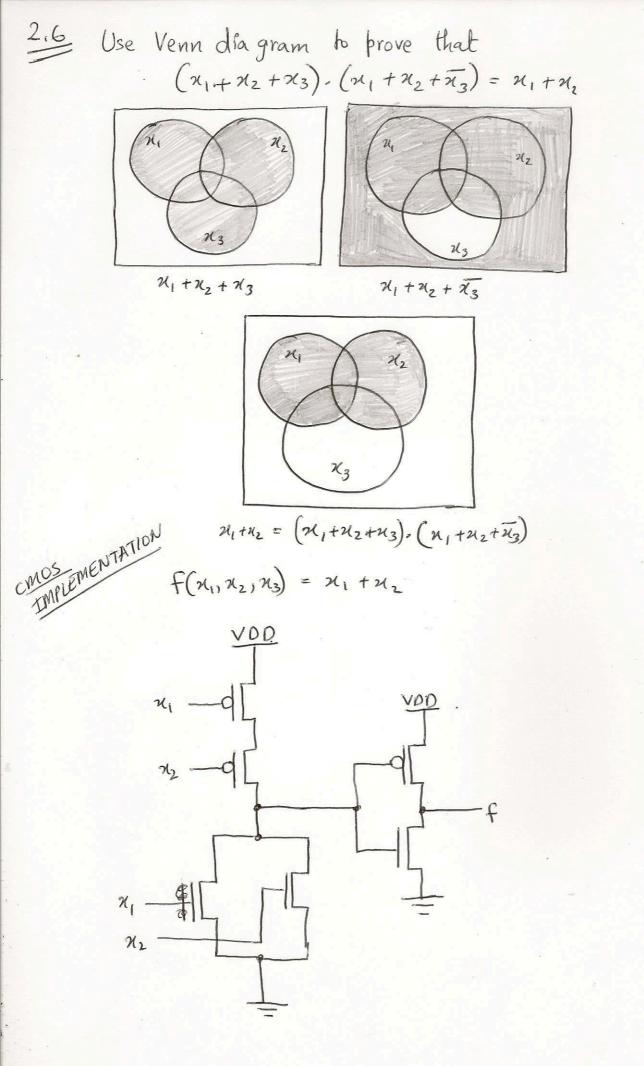
Assignment - 1 Questions 2.6, 2.10 and 2.30

Author: Muhammad Obaidullah 1030313

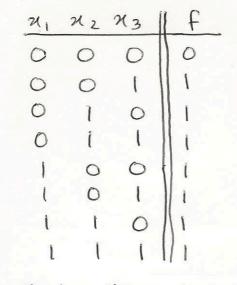
Supervisor: Dr. Mohammed Assad Ghazal

Section 1

September 17, 2012

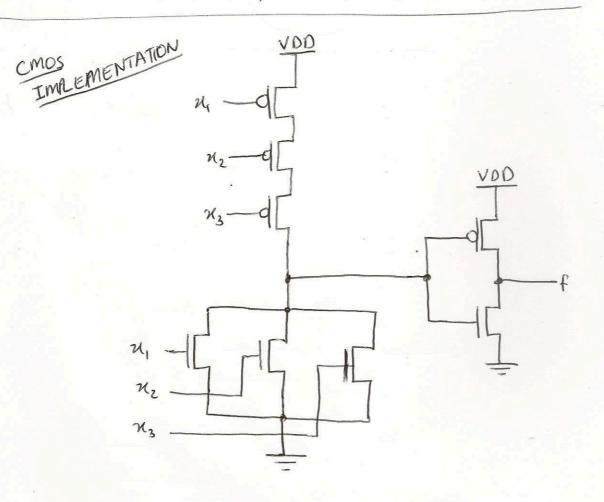


2.10

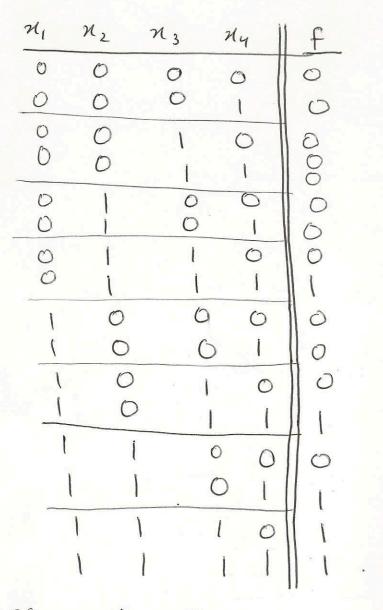


Taking Max terms

$$TTM(0) = \lambda_1 + \lambda_2 + \lambda_3$$
$$f(\lambda_1, \lambda_2, \lambda_3) = \lambda_1 + \lambda_2 + \lambda_3$$

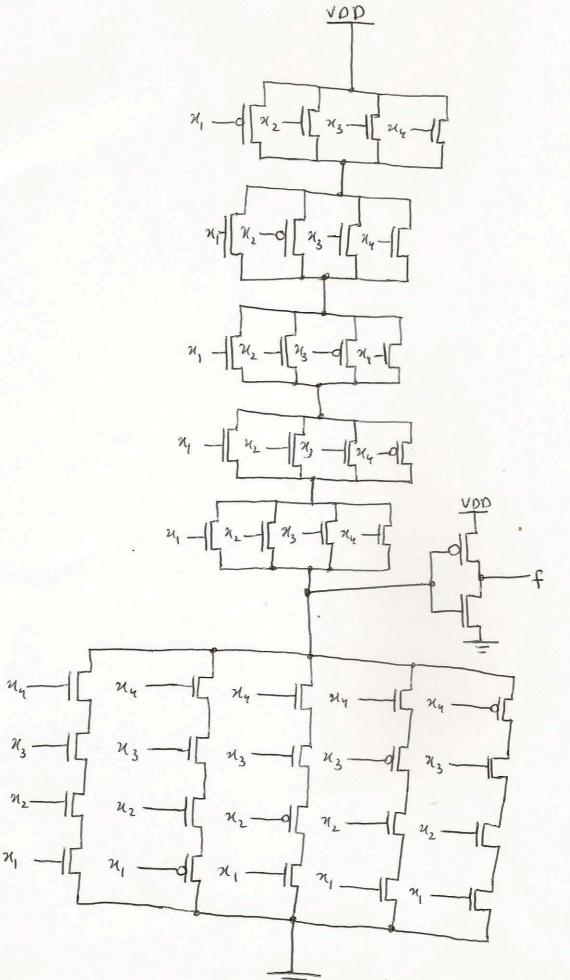


Design the simplest circuit that has four inputs n, n2, n38 nm which produces an output value of I whenever three or more of the input variables have the value of I, otherwise output has to be zero. (4-input voting hunchion)



2.30

 $f(u_1 u_2 u_3 u_4) = \overline{u_1} u_2 u_3 u_4 + u_1 \overline{u_2} u_3 u_4 + u_1 u_2 \overline{u_3} u_4 \\ + u_1 u_2 u_3 \overline{u_4} + u_1 u_2 u_3 u_4$



$$\begin{aligned}
\underbrace{Outestion II} \\
\underbrace{(N_1 N_2 \ N_3 \ N_2 \ N_3 \ N_1 \ N_1 \ N_1 \ N_2 \ N_3 \ N_1 \ N_1 \ N_1 \ N_2 \ N_3 \ N_1 \ N_1 \ N_2 \ N_3 \ N_1 \ N_1 \ N_1 \ N_2 \ N_3 \ N_1 \ N_1 \ N_1 \ N_1 \ N_1 \ N_2 \ N_3 \ N_1 \$$

Question 35

1 2

XY							
2, 20		10	4, 40			f	
	0	00	0	00		1	
	0	0	0	1		0	
	0	0	1	0		0	
	0	0	١	1		O	
	0	١	0	0		0	
	0	1	0	1		1	
	O	1	Ø	0		0	1
	0	1		1		0 0	
-	1	O	0	0	1	Û	
	1	0	D	Ger J		0	12
	1	0	- 1.	0	-	1	
	1	0	1			0	
	1	1	0	0	7	0	-
	1	1	0		1-	0	-
	1	4		0	(2	0	
		1	1	·		1	
				SK +	15	Hick	-

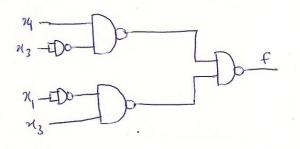
$$\begin{split} f &= \left(\varkappa_{1} + \varkappa_{0} \pm y_{1}^{2} \overline{y_{0}} \right) \left(\varkappa_{1} + \varkappa_{0} + \overline{y_{1}} + y_{0} \right) \left(\varkappa_{1} + \varkappa_{0} + \overline{y_{1}} + \overline{y_{0}} \right) \left(\varkappa_{1} + \varkappa_{0} + y_{1} + y_{0} \right) \\ &\left(\varkappa_{1} + \varkappa_{0} + \overline{y_{1}} + y_{0} \right) \left(\varkappa_{1} + \varkappa_{0} + \overline{y_{1}} + \overline{y_{0}} \right) \left(\overline{\varkappa_{1}} + \varkappa_{0} + y_{1} + \overline{y_{0}} \right) \left(\overline{\varkappa_{1}} + \varkappa_{0} + y_{1} + \overline{y_{0}} \right) \\ &\left(\overline{\varkappa_{1}} + \varkappa_{0} + \overline{y_{1}} + \overline{y_{0}} \right) \left(\overline{\varkappa_{1}} + \varkappa_{0} + y_{1} + y_{0} \right) \left(\overline{\varkappa_{1}} + \varkappa_{0} + y_{1} + \overline{y_{0}} \right) \left(\overline{\varkappa_{1}} + \varkappa_{0} + y_{1} + \overline{y_{0}} \right) \\ &= \left(\varkappa_{1} + \varkappa_{0} \right) \left(\left(y_{1} + \overline{y_{0}} \right) \left(\overline{y_{1}} + \overline{y_{0}} \right) \left(\overline{y_{1}} + \overline{y_{0}} \right) \left(\overline{\varkappa_{1}} + \varkappa_{0} \right) \left(\left(y_{1} + y_{0} \right) \left(\overline{y_{1}} + \overline{y_{0}} \right) \right) \\ &\left(\varkappa_{1} + \overline{\varkappa_{0}} \right) \left(\left(y_{1} + y_{0} \right) \left(\overline{y_{1}} + y_{0} \right) \left(\overline{\eta_{1}} + \overline{\eta_{0}} \right) \left(\left(y_{1} + y_{0} \right) \left(\overline{y_{1}} + \overline{y_{0}} \right) \right) \\ &= \left(\varkappa_{1} + \overline{\varkappa_{0}} \right) \left(\left(y_{1} + y_{0} \right) \left(\overline{\eta_{1}} + y_{0} \right) \left(\overline{\eta_{1}} + \overline{\eta_{0}} \right) \left(\overline{\varkappa_{1}} + \overline{\varkappa_{0}} \right) \left(\left(y_{1} + y_{0} \right) \left(\overline{\eta_{1}} + \overline{\eta_{0}} \right) \right) \\ &= \left(\varkappa_{1} + \overline{\eta_{1}} \right) \left(\varkappa_{1} + y_{1} \right) \left(\varkappa_{0} + \overline{\eta_{0}} \right) \left(\varkappa_{0} + \overline{\eta_{0}} \right) \\ &= \left(\varkappa_{1} + \overline{\eta_{1}} \right) \left(\varkappa_{1} + y_{1} \right) \left(\varkappa_{0} + \overline{\eta_{0}} \right) \left(\varkappa_{0} + \overline{\eta_{0}} \right) \\ &= \left(\varkappa_{1} + \overline{\eta_{1}} \right) \left(\varkappa_{1} + y_{1} \right) \left(\varkappa_{0} + \overline{\eta_{0}} \right) \left(\varkappa_{0} + \overline{\eta_{0}} \right) \\ &= \left(\varkappa_{1} + \overline{\eta_{1}} \right) \left(\varkappa_{1} + y_{1} \right) \left(\varkappa_{0} + \overline{\eta_{0}} \right) \left(\varkappa_{0} + \overline{\eta_{0}} \right) \\ &= \left(\varkappa_{1} + \overline{\eta_{1}} \right) \left(\varkappa_{1} + y_{1} \right) \left(\varkappa_{0} + \overline{\eta_{0}} \right) \left(\varkappa_{0} + \overline{\eta_{0}} \right) \\ &= \left(\varkappa_{1} + \overline{\eta_{0}} \right) \left(\varkappa_{1} + y_{1} \right) \left(\varkappa_{0} + \overline{\eta_{0}} \right) \left(\varkappa_{0} + \overline{\eta_{0}} \right) \\ &= \left(\varkappa_{1} + \overline{\eta_{0}} \right) \left(\varkappa_{1} + \eta_{0} \right) \left(\varkappa_{1} + \eta_{0} \right) \left(\varkappa_{1} + \overline{\eta_{0}} \right) \left(\varkappa_{1} + \overline{\eta_{0}} \right) \\ &= \left(\varkappa_{1} + \eta_{1} \right) \left(\varkappa_{1} + \eta_{1} \right) \left(\varkappa_{1} + \eta_{0} \right) \\ &= \left(\varkappa_{1} + \eta_{1} \right) \left(\varkappa_{1} + \eta_{0} \right) \\ &= \left(\varkappa_{1} + \eta_{1} \right) \left(\varkappa_{1} + \eta_{1} \right) \left(\varkappa_{1} + \eta_{1} \right) \left(\varkappa_{1} + \eta_{0} \right) \left(\varkappa_{1} + \eta_{0} \right) \\$$

 $(x + x, \overline{x} + \overline{x})$.

Question 41

 $n_2 n_3 f$ 0 0 0 u, 0 0 0 01 1 0 Zm (13,4,6) 0

 $f = \overline{\lambda_{1}} \overline{\lambda_{2}} \overline{\lambda_{3}} + \overline{\lambda_{1}} \overline{\lambda_{2}} \overline{\lambda_{3}} + \overline{\lambda_{1}} \overline{\lambda_{2}} \overline{\lambda_{3}} + \overline{\lambda_{1}} \overline{\lambda_{2}} \overline{\lambda_{3}}$ $f = \overline{\lambda_{1}} \left(\overline{\lambda_{3}} (\overline{\lambda_{2}} + \overline{\lambda_{2}}) \right) + \overline{\lambda_{1}} \left(\overline{\lambda_{3}} (\overline{\lambda_{2}} + \overline{\lambda_{2}}) \right)$ $f = \overline{\lambda_{1}} \overline{\lambda_{3}} + \overline{\lambda_{1}} \overline{\lambda_{3}}$



$$\begin{array}{rcl} & \overbrace{f_{1} = f_{2} ?} & f_{1} & = & f_{2} \\ & \overbrace{\pi_{1} \pi_{3} + \pi_{2} \pi_{3} + \pi_{3} \pi_{4} + \pi_{1} \pi_{2} + \pi_{1} \pi_{4} = & (\pi_{1} + \pi_{3}) \cdot (\pi_{1} + \pi_{2} + \pi_{4}) (\pi_{2} + \pi_{3} + \pi_{4}) \\ & f_{1} = \pi_{3} (\pi_{1} + \pi_{2} + \pi_{4}) + \pi_{1} (\pi_{2} + \pi_{4}) + \pi_{1} (\pi_{2} + \pi_{4}) \\ & = (\pi_{3} + \pi_{1}) (\pi_{1} + \pi_{2} + \pi_{4}) (\pi_{2} + \pi_{4}) \\ & = \pi_{3} (\pi_{1} + \pi_{2} + \pi_{4}) + \pi_{1} (\pi_{2} + \pi_{3} + \pi_{4}) \\ & = (\pi_{1} + \pi_{3}) (\pi_{1} + \pi_{2} + \pi_{4}) \quad (\pi_{2} + \pi_{3} + \pi_{4}) \end{array}$$