Vs
408
gibagdacals

ABU DHABI UNIVERSITY

ABU DHABI UNIVERSITY

CEN - 466 ADVANCED DIGITAL DESIGN

Lab Report 1

. Introduction to VHDL:
gates using VHDL, components and port map

Author:
Muhammad Obaidullah 1030313 Supervisor:
Mohammed Farooq 1007778 Dr. Mohammed Assad Ghazal

Mehdi Ismail 1005689

Section 1

December 8, 2012

Abstract

We used VHDL jhardware description language;, to work on the Cyclonell board of Altera.
Our course of jadvanced digital system design; aimed at getting us to apply the logic gates and
other equipments and techniques learnt of digital systems applied via VHDL coding. This lab
will show us through each of the features and language basics to implement logic gates and see
their output on the boards.

1 Introduction

VHDL that stands for <VHSIC (very-high-speed-integrated-circuit) Hardware Description Language>,

a language developed initially by US department of defense to to have a standard in equipments
documentation. The language is similar to the very first language of the kind, Verilog, although ver-
ilog is case sensitive and weakly typed language, VHDL is not case sensitive but is a strongly typed
language and also influenced verilog to adopt open standard after noticing the success of VHDL. We
learnt and used VHDL on Quartusll, software of altera for its boards that the lab of university were
equiped with. These boards belonged to the Cyclonell family of FPGA boards, more specifically
the EP2C35F672C6, which are named as EP2C35 identifies the family, 672 after that is the pins
on it. FPGA’s are Field programmable gate array, meaning they can be programmably designed
to create circuits that we previously bought specific chips and implemented.

Within the course objectives was to familiarize ourselves with digital logics application into the
boards, so as to be able to create any simulation of hardware we might need within a short time
frame. To that respect we implemented codes of each of the gates (NOT, AND, OR, XOR, NAND,
NOR, XNOR) simulation on the same board simultaneously.

2 Experiment Set-up

The Experiment was set up by opening and setting up the VHDL coding Integrated Development
Environment Quartus II. The code was written in the Quartus IDE and then we debugged it. After
debugging, We assigned the outputs to the pins on the ALTERA board. These outputs can by
anything ranging from LEDs to Buzzers. Additionally, there were some inputs to be assigned to
or how else could we get the input from the user. These all pins were assigned by referring to the
Datasheet of the ALTERA Cyclone II and were assigned by the Pin Planner inside the Quartus.

r— B g At
“AND oR
.fr: : iR E; _-:. T
AN TMOR
A - L
| - ADE
A A EoR
NoT A _
B 1 - A

"ENCR

2 Input AND Gate

THRLUTH TABLE

INPUTS | QUTPUT
AMD Gate

. % ¥ z
D_ Y 5]]]

¥
4] 1 4]
1 a o
1 1 1

2-input AND gate

FIpts)— Qutput
Input,

Chatpat

A
0
0
|
|

= = =

el = k=1 K=

Exclusive-NWOR gate
Input
NP D Output
Inputy

Charpat
1

A

0

4]
|
1

—=|Q|l=|9|Hx

4]
1]
1

Equivalent gate circuif

Input, :)D_DO_
Input,,]

INVERTER

Input —|>3— Output

Input | Outpurt
| 0

0 l

2-input OR gate
Input
P “":D— Output
Input,

Output

—_— T -2
F-I—F"C:

A
0
0
|
|

Exclusive-NOR gate
Input
Ul 'D‘.‘v— OCutput
Input;

Cutput
1

0
0
1

A
0
0
|
1

N E=l =S k=]]

Equivalent gate circuit

il I P

Exclusive-OR gate

ek f OCutput
Input,

A|B| Output
0|0 0
01 |
1|0 1
1|1 0

Ny _} Qutpul
Input, —

Legic Cireuit ofNaND Gate

3 List of Equipment used

Equipments and materials used during the experiment include
e Computers with Quartus Software.
e Cyclonell, Altera Boards

e Power Cable and USB cable to the board

4 Procedure

As the first and introductory lab work on the VHDL of the board, we have detailed the process of
running the VHDL code and implementing the design. End of this lab report also has the datasheet
that the board pins were implemented on.

e Open Quartus.
e Click on Create a new project.
e Click next.

e Create a folder on a directory of your choice and select it as a working directory for you
project.

e Name your project and click next.

e Now choose the board to be “EP2C35F672C6”.
e (lick next and finish.

e Now go to File j New ; VHDL File.

e Start writing the code.

Getting Started With Quartus® Il Software

Start Designing Start Learning

Designing with Quartus N software The audio/viden interactive tutorial teaches

requires a project

Create a New Project
(Mew Project Wizard)

you the basic features of Quartus I software

Open Interactive Tutorial

. ™ —

Open Existing Project |

Open Recent Project:
Alarm
BCDdecoder
FourBitAdder

Web links:

| l]fhé'r'a"h.l'i"é' ! Trainlng "'Ui'if_T_r'i_'! Demos |

[~ Daon't show this screen again

| Stpport | m ®

Figure 1: Click on “Create a New Project”.

New Project Wizard: Directory, Name, Top-Level Entity [page 1 of 5] ﬁ

What iz the working directary for thiz praject?

What iz the name of this project?

[FeM _|

‘what is the name of the top-level design entity for this project? This name is case sensitive and must
exactly match the entity name in the design file.

[Fsm _|

Use Exigting Project Settings ...

cBack | MNed> | Fnsh | Cancel |

Figure 2: Choose the directory and name it without spaces and special characters.

New Project Wizard: Family & Device Settings [page 3 of 5] “

Select the family and device pou wart to target for compilation.

— Device family — Show in ‘Available device' list
Farily: [Cyclone I =l Package: Any =
Devices; lAII _V_i Pin count: Any A
- Target device Speed grade: | Any -
~ Auto device selected by the Fitter V¥ Show advanced devices
& Specific device selected in ‘vailable devices' list [HardCopy compatible anly

Available devices:

Mame I Core v... I LE: I Uszerl/... I Memar... | Embed... I RLEL -
EFZC35F484CE 1.2 33216 322 483840 70 4
EP2C35F484C7 1.2 33216 322 483840 70 4
EP2C35F484CH 1.2 33216 322 483840 70 4
EF2C35F48418 1.2V 322 483840 70 4

4 I 4 B
EF2C3RFE72CT 1.2 33216 475 483840 70 4
EP2C35FE72CE 1.2 33216 475 483840 70 4
EPZC35FE7218 1.2 33216 475 483840 70 4 il
I:D".lr")l:l {1 Lu¥ =y 1 h ":r’)"HE‘ 277 AC0AN il | A -

Companion device
HardCopy: ;!

[¥ Limit DSP & Ré to HardCopy device resources

< Back Next > Frish | Cancel |

Figure 3: Choose the highlighted board and the Family should be “Cyclone I1”.

ot

~

19

21

23

N
ot

29

31

39

41

5 VHDL Code for AND Gate

—— Lines
— VHDL code for AND gate — starting with —
— are comments

library ieee; —— Include all the libraries
use ieee.std_logic_1164.all; — & other built—in namespaces
— that are typically used in the code
— Implementation

entity AND_ent is — Entity is used to declare I/O used in the code
port(x: in std_logic; — port x is declared as input which accepts when

y: in std_logic; — a logic input/Output value. i.e. 0 or 1

F: out std-logic — F is declared as Output

)5
end AND_ent;

architecture AND_archl of AND_ent is
— architecture is where actual description lies.
— Two approaches can be used to describe
— how our code should be working.

begin
process(x, y) —— process states that perform the below set of code
—— when either of x or y changes
begin
— compare to truth table
if ((x=’1’) and (y=’1’)) then
— if x and y are equal to 1
F<= "1 — Assign 1 to F
else
F<= 0" — Assign 0 to F
end if;
end process;
'l end AND_archl; — end of Architecture

architecture AND_arch2 of AND_ent is
begin

F <= x and y; — and is a reserved keyword which perform AND

end AND_arch2;

6 VHDL Code for NAND Gate

— Lines
— VHDL code for NAND gate — starting with —

— are comments

21

23

25

29

31

39

41

o

11

— Include all the libraries

use ieee.std_logic_1164.all; — & other built—in namespaces
— that are typically used in the code
— Implementation

entity NAND_ent is

port(x: in std_logic; — Entity is used to declare I1/O used in the code
y: in std_logic; — port x is declared as input which accepts when
F: out std_-logic — F is declared as Output

)5
end NAND._ent;

architecture NAND_archl of NAND_ent is
— architecture is where actual description lies.
— Two approaches can be used to describe
— how our code should be working.

begin
process (x, y) — process states that perform the below set of code
—— when either of x or y changes
begin
— compare to truth table
if (x=’1" and y=’1’) then — here the ’and’ compares X and Y
F <= 07 — Assign 0 to F
else
F<= 1" — Assign 1
end if;

end process;

end NAND _archl;

architecture NAND_arch2 of NAND_ent is
begin

F <= x nand y; — nand is a reserved keyword which perform NAND

end NAND_arch2;

7 VHDL Code for NOR Gate

— Lines
— VHDL code for NOR gate — starting with —
— are comments

library ieee; — Include all the libraries
use ieee.std_logic_1164.all; — & other built—in namespaces
— that are typically used in the code
— Implementation
entity NOR_ent is — Entity is used to declare I/O used in the code

17

19

23

31

33

39

41

43

~

13

port(x: in std-logic; — port x and y is declared as input which accepts when

y: in std_logic; — a logic input/Output value. i.e. 0 or 1
F: out std_logic — F is declared as Output

)

end NOR._ent;

architecture NOR_archl of NOR_ent is
— architecture is where actual description lies.
—— Two approaches can be used to describe
— how our code should be working.

begin
process (x, y) —— process states that perform the below set of code
— when either of x or y changes
begin

— compare to truth table
if (x='0" and y=’0’") then

— if x and y is equal to 0, =’ is comparison operator
F<= "1 — Assign 1 to F
else
F <= ’0"; —— Assign 0 to F, => is assignment operator
end if;
end process;
end NOR_archl; — end of Architecture

architecture NOR_arch2 of NOR_ent is
begin

F <= x nor y; — mnor is a reserved keyword which perform NOR

end NOR_arch?2;

8 VHDL Code for NOT Gate

— Lines
— VHDL code for NOT gate — starting with —

—— are comments

library ieee; —— Include all the libraries
use ieee.std_logic_1164.all; — & other built—in namespaces

— that are typically used in the code

— Implementation

entity NOT_ent is — Entity is used to declare I/O used in the code
port(x: in std_logic; — port x is declared as input which accepts when

— a logic input/Output value. i.e. 0 or 1

F: out std-logic — F is declared as Output

)5
end NOT_ent;

10

19

21

23

33

35

43

10

16

22

architecture NOT_archl of NOT_ent is
— architecture is where actual description lies.
— Two approaches can be used to describe

— how our code should be working.
begin
process (x) —— process states that perform the below set of code
—— when x changes
begin
— compare to truth table
if (x=’1") then — If x =1
F<= "0 — Assign 0 to F which shows the opposite of input
else
F<= 17
end if;
end process;
end NOT_archl; — end of Architecture

architecture NOT_arch2 of NOT_ent is
begin

F <= not x; — mnot is a reserved keyword which perform NOT

end NOT_arch2;

9 VHDL Code for OR Gate

— Lines
— VHDL code for OR gate — starting with —
— are comments
library ieee; —— Include all the libraries
use ieee.std_logic_1164.all; — & other built—in namespaces
— that are typically used in the code
— Implementation
entity OR_ent is — Entity is used to declare I/O used in the code
port(x: in std_logic; — port x is declared as input which accepts when
y: in std_logic; — a logic input/Output value. i.e. 0 or 1
F: out std-logic — F is declared as Output

)5
end OR_ent;

architecture OR_archl of OR_ent is
— architecture is where actual description lies.
— Two approaches can be used to describe

11

24

26

28

30

36

38

4(

42

10

14

16

2(

22

26

28

— how our code should be working.

begin
process(x, y) —— process states that perform the below set of code
—— when either of x or y changes
begin
— compare to truth table
if ((x=’0") and (y=’0’)) then
— if x and y is equal to 0 '=’ is comparison operator
F<= "0 — Assign 0 to F '=> is assignment operator in VHDL
else
F<= "1";
end if;
end process; — end of Architecture

end OR_.archl;

architecture OR_arch2 of OR_ent is
begin

F <= x or y; — or is a reserved keyword which perform OR

end OR_arch2;

10 VHDL Code for XNOR Gate

— Lines
— VHDL code for XNOR — starting with —
— are comments
library ieee; — Include all the libraries
;| use ieee.std_-logic_-1164.all; — & other built—in namespaces
— that are typically used in the code
— Implementation
entity XNOR_ent is — Entity is used to declare I/O used in the code
port(x: in std-logic; — port x is declared as input which accepts when
y: in std_logic; — a logic input/Output value. i.e. 0 or 1
F: out std_logic — F is declared as Output

)5
end XNOR_ent;

architecture XNOR_.archl of XNOR_ent is
— architecture is where actual description lies.
— Two approaches can be used to describe
— how our code should be working.

begin
process (x, y) —— process states that perform the below set of code
— when either of x or y changes
begin

12

30

34

36

5

46

ot

-~

13

19

21

31

— compare to truth table

if (x/=y) then — if x is not equal to 0
F<= 0 — Assign 0 to F
else
F<= 17 — Assign 1
end if;
end process;
end XNOR_archl; — end of Architecture

architecture XNOR_arch2 of XNOR_ent is
begin

F <= x xnor y; — xnor is a reserved keyword which perform XNOR

end XNOR_.arch2;

11 VHDL Code for XOR Gate

— Lines
— VHDL code for XOR gate — starting with —
— are comments
library ieee; —— Include all the libraries
use ieee.std_logic_1164.all; — & other built—in namespaces
— that are typically used in the code
— Implementation
entity XOR_ent is — Entity is used to declare I/O used in the code
port(x: in std-logic; — port x is declared as input which accepts when
y: in std_logic; — a logic input/Output value. i.e. 0 or 1
F: out std_logic — F is declared as Output

)5
end XOR_ent;

architecture XOR_archl of XOR_ent is
— architecture is where actual description lies.
— Two approaches can be used to describe
— how our code should be working.

begin
process (x, y) —— process states that perform the below set of code
— when either of x or y changes
begin
— compare to truth table
if (x/=y) then — if x and y not equal to eachother
F<= 1" — Assign 1 to F
else
F<= "0 — else 0 to F
end if;

end process;

13

end XOR_.archl; — end of Architecture

g

architecture XOR_arch2 of XOR_ent is
30| begin

11 F <= x xor y; — xor is a reserved keyword which perform AND

13 end XOR_arch2;

12 Results and Discussions

e After compiling the code successful uploading and running of the Altera Board was achieved.

Figure 4: The Board working on AND GATE

14

13 Conclusion

e These were just the basic gates, many gates can be joined together to make up combinational

or sequential blocks.

e Solving a problem using FSM is much easier than doing it combinationally.

e FSM allows us to think of the outputs and inputs and build them into a number of stages.

14 References

http://www.altera.com/devices/fpga/cyclone2/overview/cy2-overview.html
Details on the Cyclonell boards, pins, I/O pins availibility.
http://esd.cs.ucr.edu/labs/tutorial /
Website that built an idea through the class teaching/showing VHDL coding.

15 Team Dynamics

Report/Member Weight/Grade Obaidullah Farooq Mehdi Ismail
Abstract 20% 65% 15% 15%
Introduction 10% 0% 50% 50%
Procedure Part 1 10% 100% 0% 0%
Procedure Part 2 10% 0% 100% 0%
Procedure Part 3 10% 0% 0% 100%
Results Part 1 10% 100% 0% 0%
Results Part 2 10% 0% 100% 0%
Results Part 3 10% 0% 0% 100%
Conclusion 10% 0% 50% 50%

Claimed Contribution 33% 33% 33%

Contribution Validation Penalty 0% 0% 0%

Overall Contribution 33% 33% 33%

Overall Grade with Quality 100% 100.0% 100.0% 100.0%

15

