
Abu Dhabi University

CEN - 466 Advanced Digital Design

Lab Report 1

Introduction to VHDL:
gates using VHDL, components and port map

Author:
Muhammad Obaidullah 1030313
Mohammed Farooq 1007778
Mehdi Ismail 1005689

Supervisor:
Dr. Mohammed Assad Ghazal

Section 1

December 8, 2012

Abstract

We used VHDL ¡hardware description language¿ to work on the CycloneII board of Altera.
Our course of ¡advanced digital system design¿ aimed at getting us to apply the logic gates and
other equipments and techniques learnt of digital systems applied via VHDL coding. This lab
will show us through each of the features and language basics to implement logic gates and see
their output on the boards.

1 Introduction

VHDL that stands for <VHSIC (very-high-speed-integrated-circuit) Hardware Description Language>,
a language developed initially by US department of defense to to have a standard in equipments
documentation. The language is similar to the very first language of the kind, Verilog, although ver-
ilog is case sensitive and weakly typed language, VHDL is not case sensitive but is a strongly typed
language and also influenced verilog to adopt open standard after noticing the success of VHDL. We
learnt and used VHDL on QuartusII, software of altera for its boards that the lab of university were
equiped with. These boards belonged to the CycloneII family of FPGA boards, more specifically
the EP2C35F672C6, which are named as EP2C35 identifies the family, 672 after that is the pins
on it. FPGA’s are Field programmable gate array, meaning they can be programmably designed
to create circuits that we previously bought specific chips and implemented.

Within the course objectives was to familiarize ourselves with digital logics application into the
boards, so as to be able to create any simulation of hardware we might need within a short time
frame. To that respect we implemented codes of each of the gates (NOT, AND, OR, XOR, NAND,
NOR, XNOR) simulation on the same board simultaneously.

2 Experiment Set-up

The Experiment was set up by opening and setting up the VHDL coding Integrated Development
Environment Quartus II. The code was written in the Quartus IDE and then we debugged it. After
debugging, We assigned the outputs to the pins on the ALTERA board. These outputs can by
anything ranging from LEDs to Buzzers. Additionally, there were some inputs to be assigned to
or how else could we get the input from the user. These all pins were assigned by referring to the
Datasheet of the ALTERA Cyclone II and were assigned by the Pin Planner inside the Quartus.

1

2

3

4

3 List of Equipment used

Equipments and materials used during the experiment include

• Computers with Quartus Software.

• CycloneII, Altera Boards

• Power Cable and USB cable to the board

4 Procedure

As the first and introductory lab work on the VHDL of the board, we have detailed the process of
running the VHDL code and implementing the design. End of this lab report also has the datasheet
that the board pins were implemented on.

• Open Quartus.

• Click on Create a new project.

• Click next.

• Create a folder on a directory of your choice and select it as a working directory for you
project.

• Name your project and click next.

• Now choose the board to be “EP2C35F672C6”.

• Click next and finish.

• Now go to File ¿ New ¿ VHDL File.

• Start writing the code.

5

Figure 1: Click on “Create a New Project”.

6

Figure 2: Choose the directory and name it without spaces and special characters.

Figure 3: Choose the highlighted board and the Family should be “Cyclone II”.

7

5 VHDL Code for AND Gate

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−− −− Lines
−− VHDL code f o r AND gate −− s t a r t i n g with −−

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−− −− are comments

5 l i b r a r y i e e e ; −− Inc lude a l l the l i b r a r i e s
use i e e e . s t d l o g i c 1 1 6 4 . a l l ; −− & other bu i l t−in namespaces

7 −− that are t y p i c a l l y used in the code
−−−−−−−−−−−−−−−−−−−−−−−−−−−− −− Implementation

9

en t i t y AND ent i s −− Entity i s used to de c l a r e I /O used in the code
11 port (x : in s t d l o g i c ; −− port x i s dec l a r ed as input which accept s when

y : in s t d l o g i c ; −− a l o g i c input /Output value . i . e . 0 or 1
13 F: out s t d l o g i c −− F i s dec l a r ed as Output

) ;
15 end AND ent ;

17 −−

19 a r c h i t e c t u r e AND arch1 o f AND ent i s
−− a r c h i t e c t u r e i s where ac tua l d e s c r i p t i o n l i e s .

21 −− Two approaches can be used to de s c r i b e
−− how our code should be working .

23 begin

25 proce s s (x , y) −− proce s s s t a t e s that perform the below s e t o f code
−− when e i t h e r o f x or y changes

27 begin
−− compare to truth tab l e

29 i f ((x= ’1 ’) and (y= ’1 ’)) then
−− i f x and y are equal to 1

31 F <= ’1 ’ ; −− Assign 1 to F
e l s e

33 F <= ’0 ’ ; −− Assign 0 to F
end i f ;

35 end proce s s ;

37 end AND arch1 ; −− end o f Arch i t e c tu r e

39 a r c h i t e c t u r e AND arch2 o f AND ent i s
begin

41

F <= x and y ; −− and i s a r e s e rved keyword which perform AND
43

end AND arch2 ;
45

−−

6 VHDL Code for NAND Gate

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −− Lines
−− VHDL code f o r NAND gate −− s t a r t i n g with −−

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −− are comments

8

5 −− Inc lude a l l the l i b r a r i e s
use i e e e . s t d l o g i c 1 1 6 4 . a l l ; −− & other bu i l t−in namespaces

7 −− that are t y p i c a l l y used in the code
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −− Implementation

9

en t i t y NAND ent i s
11 port (x : in s t d l o g i c ; −− Entity i s used to de c l a r e I /O used in the code

y : in s t d l o g i c ; −− port x i s dec l a r ed as input which accept s when
13 F: out s t d l o g i c −− F i s dec l a r ed as Output

) ;
15 end NAND ent ;

−−
17

a r c h i t e c t u r e NAND arch1 o f NAND ent i s
19 −− a r c h i t e c t u r e i s where ac tua l d e s c r i p t i o n l i e s .

−− Two approaches can be used to de s c r i b e
21 −− how our code should be working .

begin
23

proce s s (x , y) −− proce s s s t a t e s that perform the below s e t o f code
25 −− when e i t h e r o f x or y changes

begin
27 −− compare to truth tab l e

i f (x= ’1 ’ and y= ’1 ’) then −− here the ’ and ’ compares X and Y
29 F <= ’0 ’ ; −− Assign 0 to F

e l s e
31 F <= ’1 ’ ; −− Assign 1

end i f ;
33 end proce s s ;

35 end NAND arch1 ;
−−−

37

a r c h i t e c t u r e NAND arch2 o f NAND ent i s
39 begin

41 F <= x nand y ; −− nand i s a r e s e rved keyword which perform NAND

43 end NAND arch2 ;
−−−

7 VHDL Code for NOR Gate

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−− −− Lines
−− VHDL code f o r NOR gate −− s t a r t i n g with −−

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−− −− are comments

5

l i b r a r y i e e e ; −− Inc lude a l l the l i b r a r i e s
7 use i e e e . s t d l o g i c 1 1 6 4 . a l l ; −− & other bu i l t−in namespaces

−− that are t y p i c a l l y used in the code
9 −−−−−−−−−−−−−−−−−−−−−−−−−−−− −− Implementation

11 en t i t y NOR ent i s −− Entity i s used to de c l a r e I /O used in the code

9

port (x : in s t d l o g i c ; −− port x and y i s dec l a r ed as input which accept s when
13 y : in s t d l o g i c ; −− a l o g i c input /Output value . i . e . 0 or 1

F : out s t d l o g i c −− F i s dec l a r ed as Output
15) ;

end NOR ent ;
17

−−
19

a r c h i t e c t u r e NOR arch1 o f NOR ent i s
21 −− a r c h i t e c t u r e i s where ac tua l d e s c r i p t i o n l i e s .

−− Two approaches can be used to de s c r i b e
23 −− how our code should be working .

begin
25

proce s s (x , y) −− proce s s s t a t e s that perform the below s e t o f code
27 −− when e i t h e r o f x or y changes

begin
29 −− compare to truth tab l e

i f (x= ’0 ’ and y= ’0 ’) then
31 −− i f x and y i s equal to 0 , ’= ’ i s comparison operator

F <= ’1 ’ ; −− Assign 1 to F
33 e l s e

F <= ’0 ’ ; −− Assign 0 to F, => i s ass ignment operator
35 end i f ;

end proce s s ;
37

end NOR arch1 ; −− end o f Arch i t e c tu r e
39

a r c h i t e c t u r e NOR arch2 o f NOR ent i s
41 begin

43 F <= x nor y ; −− nor i s a r e s e rved keyword which perform NOR

45 end NOR arch2 ;

47 −−−

8 VHDL Code for NOT Gate

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−− −− Lines
−− VHDL code f o r NOT gate −− s t a r t i n g with −−

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−− −− are comments

5

l i b r a r y i e e e ; −− Inc lude a l l the l i b r a r i e s
7 use i e e e . s t d l o g i c 1 1 6 4 . a l l ; −− & other bu i l t−in namespaces

−− that are t y p i c a l l y used in the code
9 −−−−−−−−−−−−−−−−−−−−−−−−−−−− −− Implementation

11 en t i t y NOT ent i s −− Entity i s used to de c l a r e I /O used in the code
port (x : in s t d l o g i c ; −− port x i s dec l a r ed as input which accept s when

13 −− a l o g i c input /Output value . i . e . 0 or 1
F : out s t d l o g i c −− F i s dec l a r ed as Output

15) ;
end NOT ent ;

10

17

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19

a r c h i t e c t u r e NOT arch1 o f NOT ent i s
21 −− a r c h i t e c t u r e i s where ac tua l d e s c r i p t i o n l i e s .

−− Two approaches can be used to de s c r i b e
23 −− how our code should be working .

begin
25

proce s s (x) −− proce s s s t a t e s that perform the below s e t o f code
27 −− when x changes

begin
29 −− compare to truth tab l e

i f (x= ’1 ’) then −− I f x = 1
31 F <= ’0 ’ ; −− Assign 0 to F which shows the oppos i t e o f input

e l s e
33 F <= ’1 ’ ;

end i f ;
35 end proce s s ;

37 end NOT arch1 ; −− end o f Arch i t e c tu r e

39 a r c h i t e c t u r e NOT arch2 o f NOT ent i s
begin

41

F <= not x ; −− not i s a r e s e rved keyword which perform NOT
43

end NOT arch2 ;
45

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 VHDL Code for OR Gate

−−−−−−−−−−−−−−−−−−−−−−−−−−−− −− Lines
2 −− VHDL code f o r OR gate −− s t a r t i n g with −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−− −− are comments

4

6 l i b r a r y i e e e ; −− Inc lude a l l the l i b r a r i e s
use i e e e . s t d l o g i c 1 1 6 4 . a l l ; −− & other bu i l t−in namespaces

8 −− that are t y p i c a l l y used in the code
−−−−−−−−−−−−−−−−−−−−−−−−−−−− −− Implementation

10

en t i t y OR ent i s −− Entity i s used to de c l a r e I /O used in the code
12 port (x : in s t d l o g i c ; −− port x i s dec l a r ed as input which accept s when

y : in s t d l o g i c ; −− a l o g i c input /Output value . i . e . 0 or 1
14 F: out s t d l o g i c −− F i s dec l a r ed as Output

) ;
16 end OR ent ;

18 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

20 a r c h i t e c t u r e OR arch1 o f OR ent i s
−− a r c h i t e c t u r e i s where ac tua l d e s c r i p t i o n l i e s .

22 −− Two approaches can be used to de s c r i b e

11

−− how our code should be working .
24 begin

26 proce s s (x , y) −− proce s s s t a t e s that perform the below s e t o f code
−− when e i t h e r o f x or y changes

28 begin
−− compare to truth tab l e

30 i f ((x= ’0 ’) and (y= ’0 ’)) then
−− i f x and y i s equal to 0 ’= ’ i s comparison operator

32 F <= ’0 ’ ; −− Assign 0 to F ’=> i s ass ignment operator in VHDL
e l s e

34 F <= ’1 ’ ;
end i f ;

36 end proce s s ; −− end o f Arch i t e c tu r e

38 end OR arch1 ;

40 a r c h i t e c t u r e OR arch2 o f OR ent i s
begin

42

F <= x or y ; −− or i s a r e s e rved keyword which perform OR
44

end OR arch2 ;

10 VHDL Code for XNOR Gate

−−−−−−−−−−−−−−−−−−−−−−−−−−−− −− Lines
2 −− VHDL code f o r XNOR −− s t a r t i n g with −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−− −− are comments

4

l i b r a r y i e e e ; −− Inc lude a l l the l i b r a r i e s
6 use i e e e . s t d l o g i c 1 1 6 4 . a l l ; −− & other bu i l t−in namespaces

−− that are t y p i c a l l y used in the code
8 −−−−−−−−−−−−−−−−−−−−−−−−−−−− −− Implementation

10

en t i t y XNOR ent i s −− Entity i s used to de c l a r e I /O used in the code
12 port (x : in s t d l o g i c ; −− port x i s dec l a r ed as input which accept s when

y : in s t d l o g i c ; −− a l o g i c input /Output value . i . e . 0 or 1
14 F: out s t d l o g i c −− F i s dec l a r ed as Output

) ;
16 end XNOR ent ;

18 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

20 a r c h i t e c t u r e XNOR arch1 o f XNOR ent i s
−− a r c h i t e c t u r e i s where ac tua l d e s c r i p t i o n l i e s .

22 −− Two approaches can be used to de s c r i b e
−− how our code should be working .

24 begin

26 proce s s (x , y) −− proce s s s t a t e s that perform the below s e t o f code
−− when e i t h e r o f x or y changes

28

begin

12

30 −− compare to truth tab l e
i f (x/=y) then −− i f x i s not equal to 0

32 F <= ’0 ’ ; −− Assign 0 to F
e l s e

34 F <= ’1 ’ ; −− Assign 1
end i f ;

36 end proce s s ;

38 end XNOR arch1 ; −− end o f Arch i t e c tu r e

40 a r c h i t e c t u r e XNOR arch2 o f XNOR ent i s
begin

42

F <= x xnor y ; −− xnor i s a r e s e rved keyword which perform XNOR
44

end XNOR arch2 ;
46

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11 VHDL Code for XOR Gate

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−− −− Lines
−− VHDL code f o r XOR gate −− s t a r t i n g with −−

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−− −− are comments

5 l i b r a r y i e e e ; −− Inc lude a l l the l i b r a r i e s
use i e e e . s t d l o g i c 1 1 6 4 . a l l ; −− & other bu i l t−in namespaces

7 −− that are t y p i c a l l y used in the code
−−−−−−−−−−−−−−−−−−−−−−−−−−−− −− Implementation

9

en t i t y XOR ent i s −− Entity i s used to de c l a r e I /O used in the code
11 port (x : in s t d l o g i c ; −− port x i s dec l a r ed as input which accept s when

y : in s t d l o g i c ; −− a l o g i c input /Output value . i . e . 0 or 1
13 F: out s t d l o g i c −− F i s dec l a r ed as Output

) ;
15 end XOR ent ;

17 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

19 a r c h i t e c t u r e XOR arch1 o f XOR ent i s
−− a r c h i t e c t u r e i s where ac tua l d e s c r i p t i o n l i e s .

21 −− Two approaches can be used to de s c r i b e
−− how our code should be working .

23 begin

25 proce s s (x , y) −− proce s s s t a t e s that perform the below s e t o f code
−− when e i t h e r o f x or y changes

27 begin
−− compare to truth tab l e

29 i f (x/=y) then −− i f x and y not equal to eachother
F <= ’1 ’ ; −− Assign 1 to F

31 e l s e
F <= ’0 ’ ; −− e l s e 0 to F

33 end i f ;
end proce s s ;

13

35

end XOR arch1 ; −− end o f Arch i t e c tu r e
37

a r c h i t e c t u r e XOR arch2 o f XOR ent i s
39 begin

41 F <= x xor y ; −− xor i s a r e s e rved keyword which perform AND

43 end XOR arch2 ;

45 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

12 Results and Discussions

• After compiling the code successful uploading and running of the Altera Board was achieved.

Figure 4: The Board working on AND GATE

14

13 Conclusion

• These were just the basic gates, many gates can be joined together to make up combinational
or sequential blocks.

• Solving a problem using FSM is much easier than doing it combinationally.

• FSM allows us to think of the outputs and inputs and build them into a number of stages.

14 References

http://www.altera.com/devices/fpga/cyclone2/overview/cy2-overview.html
Details on the CycloneII boards, pins, I/O pins availibility.
http://esd.cs.ucr.edu/labs/tutorial/
Website that built an idea through the class teaching/showing VHDL coding.

15 Team Dynamics

15

