Vs
408
gibagdacals

ABU DHABI UNIVERSITY

ABU DHABI UNIVERSITY

CEN - 466 ADVANCED DIGITAL DESIGN

Lab Report 3
Sequential Circuits: FSMs

Author:
Muhammad Obaidullah 1030313 Supervisor:
Mohammed Farooq 1007778 Dr. Mohammed Assad Ghazal

Mehdi Ismail 1005689

Section 1

December 8, 2012

Abstract

In this lab we were taught how to use VHDL to solve any problem using Finite State
Machine method. Finite state machine is sequential type of implementation. In this Lab we
wrote a simple FSM code to jump from one state to another by the use of Clock.

1 Introduction

Some times some problems cannot be simplified to be solved easily by using the traditional
combinational logic. Therefore, we use another approach to the method and that is using the clock
we break down the problem into sequences of steps / instructions / commands. These instructions
are followed in a particular sequence depending upon the clock signal given to them as counter of
program execution progress.

Finite State machine method involves solving a problem by thinking of the problem from the
view point of a bunch of inputs, outputs and states. In this way we can solve any type of problem
regardless of its difficulty. In this lab we tried to make VHDL standard FSM code for these kinds
of problems.

2 Experiment Set-up

The Experiment was set up by opening and setting up the VHDL coding Integrated Development
Environment Quartus II. The code was written in the Quartus IDE and then we debugged it. After
debugging, We assigned the outputs to the pins on the ALTERA board. These outputs can by
anything ranging from LEDs to Buzzers. Additionally, there were some inputs to be assigned to
or how else could we get the input from the user. These all pins were assigned by referring to the
Datasheet of the ALTERA Cyclone II and were assigned by the Pin Planner inside the Quartus.

3 List of Equipment used

e Power cable for Altera board.
e USB cable.
e A PC running Quartus II.

e Altera board.

4 Procedure

e Open Quartus.

Click on Create a new project.

Click next.

Create a folder on a directory of your choice and select it as a working directory for you
project.

e Name your project and click next.

Now choose the board to be “EP2C35F672C6”.

Click next and finish.

Now go to File ; New ; VHDL File.

Start writing the code.

Getting Started With Quartus® Il Software &)

Start Designing Start Learning

Designing with Quartus Il software The audio/video interactive tutorial tea

requires a project you the basic features of Quartus I software
c'&z:fpi: n?;:_"w?:;{ﬁn Open Interactive Tutorial

_—— —

Open Existing Project |

Open Recent Project:
Alarm
BCDdecoder
FourBitAdder

Web links:

" Literature [“Training | ["Online Demios | [~ Support | Nm L

[T Don't show this zcreen again

Figure 1: Click on “Create a New Project”.

New Project Wizard: Directory, Name, Top-Level Entity [page 1 of 5] ﬁ

What iz the working directary for thiz praject?

What iz the name of this project?

[FeM _|

‘what is the name of the top-level design entity for this project? This name is case sensitive and must
exactly match the entity name in the design file.

[Fsm _|

Use Exigting Project Settings ...

cBack | MNed> | Fnsh | Cancel |

Figure 2: Choose the directory and name it without spaces and special characters.

New Project Wizard: Family & Device Settings [page 3 of 5] “

Select the family and device pou wart to target for compilation.

— Device family — Show in ‘Available device' list
Farily: [Cyclone I =l Package: Any =
Devices; lAII _V_i Pin count: Any A
- Target device Speed grade: | Any -
~ Auto device selected by the Fitter V¥ Show advanced devices
& Specific device selected in ‘vailable devices' list [HardCopy compatible anly

Available devices:

Mame I Core v... I LE: I Uszerl/... I Memar... | Embed... I RLEL -
EFZC35F484CE 1.2 33216 322 483840 70 4
EP2C35F484C7 1.2 33216 322 483840 70 4
EP2C35F484CH 1.2 33216 322 483840 70 4
EF2C35F48418 1.2V 322 483840 70 4

4 I 4 B
EF2C3RFE72CT 1.2 33216 475 483840 70 4
EP2C35FE72CE 1.2 33216 475 483840 70 4
EPZC35FE7218 1.2 33216 475 483840 70 4 il
I:D".lr")l:l {1 Lu¥ =y 1 h ":r’)"HE‘ 277 AC0AN il | A -

Companion device
HardCopy: ;!

[¥ Limit DSP & Ré to HardCopy device resources

< Back Next > Frish | Cancel |

Figure 3: Choose the highlighted board and the Family should be “Cyclone I1”.

w

~

19

23

31

39

43

49

5 Main Entity “FSM” Code

— Basic libraries to include —
library ieee ;
use ieee.std_logic_1164.all;

— The main Entity —
entity FSM is
port(n: in std_logic;
clock: in std_logic;
reset: in std_logic;
y: out std_logic_vector (3 downto 0)
)
end FSM;

—— The architecture of FSM Entity —

5| architecture FSM_arch of FSM is

component clk_div IS

PORT(clock-50Mhz : IN STD.LOGIC; — The input to the clock divider is from the pin
assignment and takes 50 MHz input

clock_.1MHz : OUT STD_LOGIC; — 50 MHz divided to give 1 MHz Output

clock_.100KHz : OUT STD_LOGIC; — 50 MHz divided to give 100 KHz Output

clock_10KHz : OUT STD_LOGIC; — 50 MHz divided to give 10 KHz Output

clock_.1KHz : OUT STD_LOGIC; — 50 MHz divided to give 1 KHz Output

clock_100Hz : OUT STD_LOGIC; — 50 MHz divided to give 100 Hz Output

clock_10Hz : OUT STD_LOGIC; — 50 MHz divided to give 10 Hz Output

clock_.1Hz : OUT STDLOGIC); — 50 MHz divided to give 1 Hz Output, which is

basically one cycle per second.

5|END component ;

type state_type is (idle, washing, soaping, cleaning, drying); ——Declaring all
the 5 states
signal next_state, current: state_type; —Declaring two wires to store the

current and the next state
signal clklhz: std_-10GIC;

begin
gatel: clk_div port map (clock-50Mhz=>clock, clock_-1Hz=>clklhz); — Taking the 1Hz
output so that every one second the state is changed
state_reg: process(clklhz, reset)
begin
if (reset=’'1’) then — If Reset is one, then go immediately to Idle State

current <= idle;
elsif (clklhz’event and clklhz=’'1’) then
current <= next_state;
end if;
end process;
state_machine: process(current, n)
begin

case current is

when idle => y <= 70000”; — All outputs are OFF in Idle State

if n="0" then
next_state <= idle;

elsif n =’1" then
next_state <= washing;

end if;

when washing => y <= 71000” ; —First LED Lights up to show that it is in the

Washing State

if n="0" then

51 next_state<=washing;
elsif n=’1" then

53 next_state <= soaping;
end if;
55 when soaping => y <= 70100” ; —Second LED Lights up to show that it is in the

Soaping State
if n="0" then

57 next_state <= soaping;
elsif n=’1" then
59 next_state <= cleaning;
end if;
61 when cleaning = y <= 700107 ; —Third LED Lights up to show that it is in the

Cleaning State
if n="0" then
63 next_state <= cleaning;
elsif n=’1’ then
65 next_state <= drying;
end if;

when drying => y <= 70001”; —Fourth LED Lights up to show that it is in the
Drying State

69 if n=’0" then

next_state <= drying;

71 elsif n=’1" then

next_state <= idle; —Go Back to Idle state Again

73 end if;

when others =>

75 y <= 700007 ;

next_state <= idle;

771 end case;

end process;

79l end FSM_arch;

6 Entity “CLKDIV” Code

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164. all ;

USE IEEE.STD_LOGIC_ARITH. all ;
USE IEEE.STD_LOGIC_.UNSIGNED. all ;
ENTITY clk_div IS

PORT(clock_-50Mhz : IN STD_LOGIC;
7 clock_.1MHz : OUT STD_LOGIC;
clock_100KHz : OUT STD_LOGIC;

9 clock_ 10KHz : OUT STD_LOGIC;
clock_1KHz : OUT STD_LOGIC;

11 clock_100Hz : OUT STD_LOGIC;
clock_.10Hz : OUT STD_LOGIC;

13 clock_.1Hz : OUT STD_LOGIC) ;

w

END clk_div;
15| ARCHITECTURE Behavior OF clk_div IS
SIGNAL count_1Mhz : STD_LOGIC_VECTOR,(5 DOWNIO 0) ;
17| SIGNAL count_100Khz , count_10Khz, count_-1Khz : STD LOGIC_VECTOR(2 DOWNIO 0) ;
SIGNAL count_-100hz, count-10hz, count_-lhz : STD_LOGIC_-VECTOR,(2 DOWNIO 0) ;
19| SIGNAL clock_1Mhz_int , clock_100Khz_int : STD_LOGIC;
SIGNAL clock_10Khz_int , clock_1Khz_int : STD_LOGIC;

21| SIGNAL clock_-100hz_int , clock_10Hz_int : STD_LOGIC;

SIGNAL clock_1Hz_int : STD_LOGIC;
23| BEGIN
PROCESS
25| BEGIN
— Divide by 50
27| WAIT UNTIL clock_-50Mhz ’EVENT and clock_-50Mhz = '17;
IF count_1Mhz < 49 THEN
29 count_1Mhz <= count_1Mhz + 1;
ELSE
31 count_1Mhz <= ”7000000" ;
END IF;

33 IF count_-1Mhz < 24 THEN

clock_1Mhz_int <= ’07;

35 ELSE

clock_-1Mhz_int <= ’'17;

37 END IF;

— Ripple clocks are used in this code to save prescalar hardware
39|— Sync all clock prescalar outputs back to master clock signal
clock_1Mhz <= clock_1Mhz_int ;

41 clock_.100Khz <= clock_100Khz_int;

clock.10Khz <= clock_10Khz_int;

43 clock_1Khz <= clock_1Khz_int;

clock_100hz <= clock_100hz_int;

15 clock_10hz <= clock_10hz_int;

clock_1hz <= clock_lhz_int;

17| END PROCESS;
— Divide by 10
19| PROCESS
BEGIN
51 WAIT UNTIL clock_1Mhz_int ’EVENT and clock_1Mhz_int = ’17;
IF count_-100Khz /= 4 THEN
53 count_100Khz <= count_100Khz + 1;
ELSE
55 count_100khz <= 7000” ;
clock_100Khz_int <= NOT clock_100Khz_int ;
57 END IF;
END PROCESS;
59 — Divide by 10
PROCESS
61| BEGIN
WAIT UNTIL clock-100Khz_int "EVENT and clock_100Khz_int = ’17;

63 IF count_-10Khz /= 4 THEN

count_-10Khz <= count_10Khz + 1;

65 ELSE

count_10khz <= 7000";

67 clock_10Khz_int <= NOT clock_10Khz_int ;
END IF ;

60| END PROCESS;

— Divide by 10

71| PROCESS

BEGIN

73 WAIT UNTIL clock_10Khz_int "EVENT and clock_10Khz_int = ’17;
IF count-1Khz /= 4 THEN

75 count_1Khz <= count_1Khz + 1;

ELSE

77 count_lkhz <= 7000”7 ;

clock_1Khz_int <= NOT clock_1Khz_int ;
79 END IF;

81

91

93

99

111

END PROCESS;
— Divide by 10
PROCESS
BEGIN
WAIT UNTIL clock_1Khz_int ’"EVENT and clock_1Khz_int = ’17;
IF count_100hz /= 4 THEN
count_100hz <= count_100hz + 1;
ELSE
count_100hz <= 7000”;
clock_100hz_int <= NOT clock_100hz_int ;
END IF;
END PROCESS;
— Divide by 10
PROCESS
BEGIN
WAIT UNTIL clock_100hz_int "EVENT and clock_100hz_int = ’17;
IF count_10hz /= 4 THEN
count_10hz <= count_10hz + 1;
ELSE
count_10hz <= 7000";
clock_10hz_int <= NOT clock_10hz_int ;
END IF;
END PROCESS;
—— Divide by 10
PROCESS
BEGIN
WAIT UNTIL clock_10hz_int ’EVENT and clock_10hz_int = ’'17;
IF count_-lhz /= 4 THEN
count_lhz <= count_-lhz + 1;
ELSE
count_-lhz <= 7000”7 ;
clock_lhz_int <= NOT clock_1hz_int;
END IF;
END PROCESS;
END Behavior;

7 Results and Discussions

e After compiling the code successful uploading and running of the Altera Board was achieved.

e Whenever the clock button was pressed, the state was changed to the next one and the next
two LEDs lit up.

Quartus Il ﬂ

—

| Full Compilation was successful (6 warnings)

Figure 4: After writing the code, a successful compilation of the code was achieved.

Figure 5: LED for the first state is turned ON after 1 second.

Figure 6: LED for the second state is turned ON after 1 second

Figure 7: LED for the Third state is turned ON after 1 second.

Figure 8: LED for the Fourth state is turned ON after 1 second.

Figure 9: When the “RESET” button is pressed, the whole system comes to a halt and no LED is
lit up as the system is in idle state where no LEDS should be ON.

10

Figure 10: When the “SET” button is switched ON, the system continues to work with normal
functionality.

11

8 Conclusion

e This was just a basic FSM, and it can be changed later to add or subtract states and make

it a more complex design.

e Solving a problem using FSM is much easier than doing it combinationally.

e FSM allows us to think of the outputs and inputs and build them into a number of stages.

9 Team Dynamics

Report/Member Weight/Grade Obaidullah Farooq Mehdi Ismail
Abstract 20% 65% 15% 15%
Introduction 10% 0% 50% 50%
Procedure Part 1 10% 100% 0% 0%
Procedure Part 2 10% 0% 100% 0%
Procedure Part 3 10% 0% 0% 100%
Results Part 1 10% 100% 0% 0%
Results Part 2 10% 0% 100% 0%
Results Part 3 10% 0% 0% 100%
Conclusion 10% 0% 50% 50%

Claimed Contribution 33% 33% 33%

Contribution Validation Penalty 0% 0% 0%

Overall Contribution 33% 33% 33%

Overall Grade with Quality 100% 100.0% 100.0% 100.0%

12

