
Abu Dhabi University

CEN - 466 Advanced Digital Design

Lab Report 3

Sequential Circuits: FSMs

Author:
Muhammad Obaidullah 1030313
Mohammed Farooq 1007778
Mehdi Ismail 1005689

Supervisor:
Dr. Mohammed Assad Ghazal

Section 1

December 8, 2012

Abstract

In this lab we were taught how to use VHDL to solve any problem using Finite State
Machine method. Finite state machine is sequential type of implementation. In this Lab we
wrote a simple FSM code to jump from one state to another by the use of Clock.

1 Introduction

Some times some problems cannot be simplified to be solved easily by using the traditional
combinational logic. Therefore, we use another approach to the method and that is using the clock
we break down the problem into sequences of steps / instructions / commands. These instructions
are followed in a particular sequence depending upon the clock signal given to them as counter of
program execution progress.

Finite State machine method involves solving a problem by thinking of the problem from the
view point of a bunch of inputs, outputs and states. In this way we can solve any type of problem
regardless of its difficulty. In this lab we tried to make VHDL standard FSM code for these kinds
of problems.

2 Experiment Set-up

The Experiment was set up by opening and setting up the VHDL coding Integrated Development
Environment Quartus II. The code was written in the Quartus IDE and then we debugged it. After
debugging, We assigned the outputs to the pins on the ALTERA board. These outputs can by
anything ranging from LEDs to Buzzers. Additionally, there were some inputs to be assigned to
or how else could we get the input from the user. These all pins were assigned by referring to the
Datasheet of the ALTERA Cyclone II and were assigned by the Pin Planner inside the Quartus.

3 List of Equipment used

• Power cable for Altera board.

• USB cable.

• A PC running Quartus II.

• Altera board.

4 Procedure

• Open Quartus.

• Click on Create a new project.

• Click next.

• Create a folder on a directory of your choice and select it as a working directory for you
project.

• Name your project and click next.

1

• Now choose the board to be “EP2C35F672C6”.

• Click next and finish.

• Now go to File ¿ New ¿ VHDL File.

• Start writing the code.

Figure 1: Click on “Create a New Project”.

2

Figure 2: Choose the directory and name it without spaces and special characters.

Figure 3: Choose the highlighted board and the Family should be “Cyclone II”.

3

5 Main Entity “FSM” Code

1 −− Basic l i b r a r i e s to inc lude −−
l i b r a r y i e e e ;

3 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

5 −− The main Entity −−
en t i t y FSM i s

7 port (n : in s t d l o g i c ;
c l o ck : in s t d l o g i c ;

9 r e s e t : in s t d l o g i c ;
y : out s t d l o g i c v e c t o r (3 downto 0)

11) ;
end FSM;

13

−− The a r c h i t e c t u r e o f FSM Entity −−
15 a r c h i t e c t u r e FSM arch o f FSM i s

component c l k d i v IS
17 PORT(clock 50Mhz : IN STD LOGIC; −− The input to the c l o ck d i v i d e r i s from the pin

ass ignment and takes 50 MHz input
clock 1MHz : OUT STD LOGIC; −− 50 MHz div ided to g ive 1 MHz Output

19 clock 100KHz : OUT STD LOGIC; −− 50 MHz div ided to g ive 100 KHz Output
clock 10KHz : OUT STD LOGIC; −− 50 MHz div ided to g ive 10 KHz Output

21 clock 1KHz : OUT STD LOGIC; −− 50 MHz div ided to g ive 1 KHz Output
c lock 100Hz : OUT STD LOGIC; −− 50 MHz div ided to g ive 100 Hz Output

23 c lock 10Hz : OUT STD LOGIC; −− 50 MHz div ided to g ive 10 Hz Output
c lock 1Hz : OUT STD LOGIC) ; −− 50 MHz div ided to g ive 1 Hz Output , which i s

b a s i c a l l y one cy c l e per second .
25 END component ;

type s t a t e t yp e i s (i d l e , washing , soaping , c l ean ing , drying) ; −−Dec lar ing a l l
the 5 s t a t e s

27 s i g n a l nex t s ta t e , cur rent : s t a t e t yp e ; −−Dec lar ing two wi re s to s t o r e the
cur rent and the next s t a t e

s i g n a l c lk1hz : std lOGIC ;
29 begin

gate1 : c l k d i v port map (clock 50Mhz=>c lock , c lock 1Hz=>c lk1hz) ; −− Taking the 1Hz
output so that every one second the s t a t e i s changed

31 s t a t e r e g : p roce s s (c lk1hz , r e s e t)
begin

33 i f (r e s e t = ’1 ’) then −− I f Reset i s one , then go immediately to I d l e State
cur rent <= i d l e ;

35 e l s i f (c lk1hz ’ event and c lk1hz = ’1 ’) then
cur rent <= nex t s t a t e ;

37 end i f ;
end proce s s ;

39 s tate mach ine : p roce s s (current , n)
begin

41

case cur rent i s
43 when i d l e => y <= ”0000” ; −− Al l outputs are OFF in I d l e State

i f n= ’0 ’ then
45 nex t s t a t e <= i d l e ;

e l s i f n = ’1 ’ then
47 nex t s t a t e <= washing ;

end i f ;
49 when washing => y <= ”1000” ; −−F i r s t LED Lights up to show that i t i s in the

Washing State
i f n= ’0 ’ then

4

51 next s ta t e<=washing ;
e l s i f n= ’1 ’ then

53 nex t s t a t e <= soaping ;
end i f ;

55 when soaping => y <= ”0100” ; −−Second LED Lights up to show that i t i s in the
Soaping State

i f n= ’0 ’ then
57 nex t s t a t e <= soaping ;

e l s i f n= ’1 ’ then
59 nex t s t a t e <= c l ean ing ;

end i f ;
61 when c l e an ing => y <= ”0010” ; −−Third LED Lights up to show that i t i s in the

Cleaning State
i f n= ’0 ’ then

63 nex t s t a t e <= c l ean ing ;
e l s i f n= ’1 ’ then

65 nex t s t a t e <= drying ;
end i f ;

67

when drying => y <= ”0001” ; −−Fourth LED Lights up to show that i t i s in the
Drying State

69 i f n= ’0 ’ then
nex t s t a t e <= drying ;

71 e l s i f n= ’1 ’ then
nex t s t a t e <= i d l e ; −−Go Back to I d l e s t a t e Again

73 end i f ;
when othe r s =>

75 y <= ”0000” ;
n ex t s t a t e <= i d l e ;

77 end case ;
end proce s s ;

79 end FSM arch ;

6 Entity “CLKDIV” Code

1 LIBRARY IEEE ;
USE IEEE . STD LOGIC 1164 . a l l ;

3 USE IEEE .STD LOGIC ARITH. a l l ;
USE IEEE .STD LOGIC UNSIGNED. a l l ;

5 ENTITY c l k d i v IS
PORT(clock 50Mhz : IN STD LOGIC;

7 clock 1MHz : OUT STD LOGIC;
clock 100KHz : OUT STD LOGIC;

9 clock 10KHz : OUT STD LOGIC;
clock 1KHz : OUT STD LOGIC;

11 c lock 100Hz : OUT STD LOGIC;
c lock 10Hz : OUT STD LOGIC;

13 c lock 1Hz : OUT STD LOGIC) ;
END c l k d i v ;

15 ARCHITECTURE Behavior OF c l k d i v IS
SIGNAL count 1Mhz : STD LOGIC VECTOR(5 DOWNTO 0) ;

17 SIGNAL count 100Khz , count 10Khz , count 1Khz : STD LOGIC VECTOR(2 DOWNTO 0) ;
SIGNAL count 100hz , count 10hz , count 1hz : STD LOGIC VECTOR(2 DOWNTO 0) ;

19 SIGNAL clock 1Mhz int , c l ock 100Khz int : STD LOGIC;
SIGNAL clock 10Khz int , c l o ck 1Khz in t : STD LOGIC;

5

21 SIGNAL c l o ck 100hz in t , c l o ck 10Hz in t : STD LOGIC;
SIGNAL c l o ck 1Hz in t : STD LOGIC;

23 BEGIN
PROCESS

25 BEGIN
−− Divide by 50

27 WAIT UNTIL clock 50Mhz ’EVENT and clock 50Mhz = ’ 1 ’ ;
IF count 1Mhz < 49 THEN

29 count 1Mhz <= count 1Mhz + 1 ;
ELSE

31 count 1Mhz <= ”000000” ;
END IF ;

33 IF count 1Mhz < 24 THEN
clock 1Mhz int <= ’0 ’ ;

35 ELSE
c lock 1Mhz int <= ’1 ’ ;

37 END IF ;
−− Ripple c l o c k s are used in t h i s code to save p r e s c a l a r hardware

39 −− Sync a l l c l o ck p r e s c a l a r outputs back to master c l o ck s i g n a l
clock 1Mhz <= clock 1Mhz int ;

41 clock 100Khz <= clock 100Khz int ;
c lock 10Khz <= clock 10Khz in t ;

43 clock 1Khz <= clock 1Khz in t ;
c l ock 100hz <= c l o ck 100h z i n t ;

45 c l o ck 10hz <= c l o c k 1 0h z i n t ;
c l o ck 1hz <= c l o c k 1h z i n t ;

47 END PROCESS;
−− Divide by 10

49 PROCESS
BEGIN

51 WAIT UNTIL clock 1Mhz int ’EVENT and c lock 1Mhz int = ’ 1 ’ ;
IF count 100Khz /= 4 THEN

53 count 100Khz <= count 100Khz + 1 ;
ELSE

55 count 100khz <= ”000” ;
c l ock 100Khz int <= NOT clock 100Khz int ;

57 END IF ;
END PROCESS;

59 −− Divide by 10
PROCESS

61 BEGIN
WAIT UNTIL c lock 100Khz int ’EVENT and c lock 100Khz int = ’ 1 ’ ;

63 IF count 10Khz /= 4 THEN
count 10Khz <= count 10Khz + 1 ;

65 ELSE
count 10khz <= ”000” ;

67 c l ock 10Khz in t <= NOT clock 10Khz in t ;
END IF ;

69 END PROCESS;
−− Divide by 10

71 PROCESS
BEGIN

73 WAIT UNTIL c lock 10Khz int ’EVENT and c lock 10Khz in t = ’ 1 ’ ;
IF count 1Khz /= 4 THEN

75 count 1Khz <= count 1Khz + 1 ;
ELSE

77 count 1khz <= ”000” ;
c l o ck 1Khz in t <= NOT c lock 1Khz in t ;

79 END IF ;

6

END PROCESS;
81 −− Divide by 10

PROCESS
83 BEGIN

WAIT UNTIL c lock 1Khz int ’EVENT and c lock 1Khz in t = ’ 1 ’ ;
85 IF count 100hz /= 4 THEN

count 100hz <= count 100hz + 1 ;
87 ELSE

count 100hz <= ”000” ;
89 c l o c k 100h z i n t <= NOT c l o c k 100h z i n t ;

END IF ;
91 END PROCESS;

−− Divide by 10
93 PROCESS

BEGIN
95 WAIT UNTIL c l o ck 100hz in t ’EVENT and c l o c k 100h z i n t = ’ 1 ’ ;

IF count 10hz /= 4 THEN
97 count 10hz <= count 10hz + 1 ;

ELSE
99 count 10hz <= ”000” ;

c l o c k 1 0h z i n t <= NOT c l o c k 1 0h z i n t ;
101 END IF ;

END PROCESS;
103 −− Divide by 10

PROCESS
105 BEGIN

WAIT UNTIL c l o ck 10hz i n t ’EVENT and c l o c k 1 0h z i n t = ’ 1 ’ ;
107 IF count 1hz /= 4 THEN

count 1hz <= count 1hz + 1 ;
109 ELSE

count 1hz <= ”000” ;
111 c l o c k 1h z i n t <= NOT c l o c k 1h z i n t ;

END IF ;
113 END PROCESS;

END Behavior ;

7 Results and Discussions

• After compiling the code successful uploading and running of the Altera Board was achieved.

• Whenever the clock button was pressed, the state was changed to the next one and the next
two LEDs lit up.

7

Figure 4: After writing the code, a successful compilation of the code was achieved.

Figure 5: LED for the first state is turned ON after 1 second.

8

Figure 6: LED for the second state is turned ON after 1 second

Figure 7: LED for the Third state is turned ON after 1 second.

9

Figure 8: LED for the Fourth state is turned ON after 1 second.

Figure 9: When the “RESET” button is pressed, the whole system comes to a halt and no LED is
lit up as the system is in idle state where no LEDS should be ON.

10

Figure 10: When the “SET” button is switched ON, the system continues to work with normal
functionality.

11

8 Conclusion

• This was just a basic FSM, and it can be changed later to add or subtract states and make
it a more complex design.

• Solving a problem using FSM is much easier than doing it combinationally.

• FSM allows us to think of the outputs and inputs and build them into a number of stages.

9 Team Dynamics

12

