CAPSTONE PROJECT PROPOSAL

Hand Gesture Controlled Emergency Aerial Assistance Using Smartphone Based 3G Quadcopter

Team Members: Muhammad Obaidullah – 1030313 Sifat Sultan – 1003289

Supervisor: Dr. Mohammed Assad Ghazal

Outline

Introduction

Problem Statement

Proposed Solution

Model

Testing Plan

Initial Results

Cost Analysis

Conclusion

INTRODUCTION

Lives are lost as fast-aids do not reach on time.

Traffic

Remote Location

PROBLEM STATEMENT

Accident Rescue Teams are Primitive and In-efficient

PROPOSED SOLUTION

USE OF QUADCOPTER

Deliver Aid

Instruct Victim

System Diagram

 $3G\left((00)\right) 3G$

39

GPS

MODEL

Waypoint using GPS Location

LEAP MOTION CONTROL

3D printing the Parts

Circuit Diagram

Key Components

Tilt Compensated Compass

Electronic Speed Controller 30Amps

Ultra-Sonic Height Sensor

X-Bee

PCB

TESTING PLAN

PHASE 1 – Getting the Quadcopter to Fly

S.No.	Task Name	Status	Estimated Completion Time
1.	Design the PCB	Complete	1 st February
2.	Solder the PCB	Incomplete	3 rd February
3.	Writing the Code for Xbee Communication	Complete	2 nd February
4.	Fine Tuning and Testing	Incomplete	5 th February

PHASE 2 – Quadcopter Stabalization

S.No.	Task Name	Status	Estimated Completion Time
1.	Buy the Controller Chip	Incomplete	15 th February
2.	Finding the Control Signals for the Controller Chip	Incomplete	17 th February
3.	Writing the Code for Stabilization	Incomplete	19 th February
4.	Achieve effective Communication between Xbee and Controller Chip	Incomplete	23 th February

PHASE 3 – Android WiFi Communication

S.No.	Task Name	Status	Estimated Completion Time
1.	Establish USB-Serial Communication between Android and Controller Chip	Incomplete	24 th February
2.	Code in Java for Sending Flight Commands	Incomplete	27 th February
3.	Design the 3D case for android to mount on Quadcopter	Incomplete	28 th February
4.	WiFi Video Streaming	Incomplete	1 st March

PHASE 3 – Full 3G Communication

S.No.	Task Name	Status	Estimated Completion Time
1.	Establish a auto-configuration 3G Communication Channel	Incomplete	6 th March
2.	Intelligent Flight in case of Dropped Communication	Incomplete	8 th March
3.	GPS route following	Incomplete	20 th March
4.	Fine Tuning and Re- configuration	Incomplete	30 th March

INITIAL RESULTS

MATLAB THRUST CALCULATION

```
% Propeller hover efficiency
eta = 0.75;
% Power of the motor Max. for our motor is 125
Power = 110;
% Propeller Radius in meters diameter = 10 inches = 0.2794
R = 0.2540;
% Usual Air Desnity kg/m<sup>3</sup>
rho = 1.22;
Thrust = ((eta+Power)^2 * 2 * pi * R^2 * rho)^(1/3);
disp('Thrust in Newtons:');
Thrust
disp('Weight Liftable by one motor in Kg:');
Weight = Thrust/9.80665002864;
Weight
disp('Weight Liftable by all four motors in Kg:');
Weight = (Thrust/9.80665002864)*4;
Weight
```

MATLAB THRUST CALCULATION

```
Thrust in Newtons:
Thrust =
   18.2375
Weight Liftable by one motor in Kg:
Weight =
    1.8597
Weight Liftable by all four motors in Kg:
Weight =
    7.4388
```


COST ANALYSIS

Cost Analysis Bought

Cost Analysis To Buy \mathfrak{m} Breakout, 54.8665 Xbee, 168.453 Compensated Compass, 109.9165 Servo, 32.8465 Arduino Uno, Arduino Uno 40.37 Control R3, 120 Board,

66.0233

CONCLUSION

Collaboration Required

Its Possible

Nobel Use

