

Abu Dhabi University

ELECTRIC CIRCUITS

Design Project Problem 7.89

Author: Muhammad Obaidullah 1030313

Supervisor: Dr. Montasir Qasymeh

Section 1

August 13, 2012

Abstract

The design project is to solve Problem 7.89 (page 281) of the text book. I solved the problem analytically and also using the MULTISIM.

1 Question

The voltage pulse shown in *Figure 1* is applied to the ideal integrating amplifier shown in *Figure 2*. Derive the numerical expressions for v(t) when v(0) = 0 for the time intervals

- **a)** t < 0.
- **b)** $0 \le t \le 250 \text{ ms.}$
- c) $250 \text{ ms} \le t \le 500 \text{ ms}.$
- **d)** 500 ms \le t $< \infty$.

Figure 1: Voltage Pulse

Figure 2: Integrating Amplifier

2 Answer

a) Switch is open, therefore no correct is possing through
V-terminal and also
$$V_{\pm} = 0V = V_{\pm}$$
 so Vo at any
time < 0s is $V_{0} = 0$.
b) $0 \le t \le 250 \text{ ms}$
 $V_{g} = -200 \text{ mV}$ in this interval
Using formula on previous page
 $V_{0} = -\frac{1}{100} \int_{0}^{t} -200 \times 10^{-3} dt$
 $25 \times 100 \times 10^{-3} \int_{0}^{t} -200 \times 10^{-3} dt$
 $\frac{1}{100} \int_{0}^{t} +200 \times 10^{-3} dt$
 $\frac{1}{100} \int_{0}^{t} +200 \times 10^{-3} dt$
 $\frac{1}{100} \int_{0}^{t} +200 \times 10^{-3} dt$
 $\frac{1}{100} \int_{0}^{t} 400 \times 10^{-3} \times 10^{-3} dt$
 $V_{0} = \pm 100 (200 \times 10^{-3} \times 250 \times 10^{-3})$
 $V_{0} = 5 \text{ M}$ at 250 ms
 $Applying formula$
 $V_{0} = -100 \int_{0}^{t} V_{0} dt$
 $V_{0} = -100 \int_{0}^{t} V_{0} dt + V_{0}(t_{0})$
 $\frac{1}{100} \int_{0}^{t} 200 \times 10^{-3} \text{ M} + 5 \int_{0}^{t} 250 \times 10^{-3} \text{ M} + 5 \int_{0}^{$

d)
$$500 \text{ ms} \leq t < \infty$$

 $V_g = 0 \text{ mV}$ for this interval
At time = 500 ms what was $V_0?$
 $V_0 = -100 \int_{200 \times 10^3}^{500 \times 10^3} dy + 5$
 $250 \times 10^3 dy + 5$
 $V_0 = -100 (200 \times 10^3 (500 \times 10^3 - 250 \times 10^3)) + 5$
 $V_0 = -100 (0.05) + 5$
 $V_0 = -5 + 5$
 $V_0 = -5 + 5$
 $V_0 = 0$
No at $500 \text{ ms} = 0V$
Applying formula
 $V_0 = -100 \int_{500 \times 10^{-3}}^{0} t = 0$
 $f_{00} = 0$
 $V_0 = 0$
 $F_0 = -100 \int_{500 \times 10^{-3}}^{0} t = 0$
 $f_{00} = 0$
This is true because capacitor has fully discharged.

Figure 3: The following circuit was drawn and simulated in Multisim XFG1 is the function generator set according to figure 4. XSC1 is an oscilloscope to compare input and output signals

Naveforms		
\sim	\sim	
Signal options	1	
Frequency:	2	Hz
Duty cycle:	50	%
Amplitude:	200	mVp
Offset:	0	V
Set	rise/Fall time	<u>.</u>
+	Common	1.22

Figure 4: The Frequency Generator producing

square wave of these features was provided as Vg Figure 5: Seeing input Vg from Channel A and to Negative input of Amplifier output Vo from Channel B

Detailed Analysis of the input voltage Vg and output voltage Vo showed that my equations resulted in close approximations

For Example:

Vo at time t = 0 ms is Approximately 0 V.

Vo at time t = 250 ms is Approximately 5 V.

Vo at time t = 500 ms is Approximately 0 V.

Figure 6: Detailed Explanation of the results using one portion of the signal at input Vg