
Bachelor’s Thesis

Hand Gesture Controlled Emergency
Aerial Assistance Using Smartphone

Based 4G Quadcopter

Authors:

Muhammad Obaidullah

Sifat Sultan

Supervisor:

Dr. Mohammed Assad Ghazal

A thesis submitted in fulfillment of the requirements

for the degree of Bachelors of Science in Electrical Engineering

in

Department of Electrical & Computer Engineering

College of Engineering

September 22, 2014

http://www.adu.ac.ae/facultyprofile/engclg/mohammed-ghazal.html
http://www.adu.ac.ae/department-ce-eeng.html
http://www.adu.ac.ae/college-of-engineering.html

In The Name of Allah, The Most Beneficent, The Most Merciful.

Declaration of Authorship

We, Muhammad Obaidullah & Sifat Sultan, declare that this thesis titled, ’Hand Gesture

Controlled Emergency Aerial Assistance Using Smartphone Based 4G Quadcopter’ and

the work presented in it are our own. We confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Muhammad Obaidullah

Signed:

Date:

Sifat Sultan

Signed:

Date:

ii

“Attainment of knowledge is a must for every Muslim”

Holy Prophet of Allah Muhammad (S.A.W.)

“Stay hungry, stay foolish”

Steve Jobs

(1955 - 2011)

“The real asset of any advanced nation is its people, especially the educated ones, and

the prosperity and success of the people are measured by the standard of their education.”

Sheikh Zayed bin Sultan Al Nahyan

(1918 - 2004)

ABU DHABI UNIVERSITY

Abstract

Faculty of Electrical & Computer Engineering

Department of Electrical & Computer Engineering

Bachelor of Science Electrical Engineering

Hand Gesture Controlled Emergency Aerial Assistance Using Smartphone

Based 4G Quadcopter

by Muhammad Obaidullah

Sifat Sultan

This project aims to solve the problem of providing emergency medical or any other

type of assistance in a un-accessible area by using a 4G quadcopter which is controlled

by hand gestures. The hand gestures provided by the user will be used to maneuver the

quadcopter to reach the emergency location and provide assistance. The uniqueness of

this project lies in the fact that it uses a 4G smartphone to connect the quadcopter to

the base station for getting the user commands, providing the GPS location, and live

video stream of the quadcopter’s vision.

http://www.adu.ac.ae/
http://www.adu.ac.ae/department-ce-eeng.html
http://www.adu.ac.ae/department-ce-eeng.html

Acknowledgements

We would like to thank first of all Allah (S.W.T.) for everything. Secondly our parents

who were there at all times for us when we needed them throughout this project. This

project would not be possible if our parents did not encourage and support us when we

were at our lowest and near the brink of giving up.

We would like to acknowledge various faculty members of Abu Dhabi University.

Our supervisor and adviser, Dr. Mohammed Assad Ghazal, gave us a chance to realize

our idea and our vision. His continuous efforts and chain of ideas proved to be priceless

in many aspects of this project. We would also like to acknowledge Eng. Ibrahim for

priceless hardware solutions he provided regarding PCB and ESC programming. Eng.

Ahmed Sweleh for cooperation, firmware programming and many PCB solutions. Eng.

Nasir for the idea of wooden protection box and quadcopter weight calculations. Also

Dr. Hamdi Sheibani for allowing us to use the mechanical lab various times.

Last but not the least, our dear friends and brother Abid Abdul Aziz, and Shihab

Sultan for their groundbreaking mechanical skills and passion. Bilal Ahmad and Mo-

hammed Ali Sadi for helping in different aspects of project. Bilal Arshad for strategical

tackling and negotiating with various people. For continuous motivation and encourage-

ment we would like to acknowledge Owais Ali.

v

Contents

Declaration of Authorship ii

Abstract iv

Acknowledgements v

. v

. v

. v

Contents vi

List of Figures xii

List of Tables xv

Abbreviations xvi

Symbols xvii

1 Introduction 1

1.1 Project Background . 1

. 1

. 1

Quadcopter: . 1

Leap Motion: . 1

. 2

Quad Copter Application 2

. 2

1.2 Problem Discussion . 2

. 2

. 2

. 3

2 Design 4

2.1 Project Description . 4

vi

Contents vii

. 4

. 4

. 5

2.1.1 Using a UAV for agility and accessibility 5

. 5

2.1.2 Use of a quadcopter for ease of control and high payload delivery . 5

. 5

. 6

Forward Direction: . 6

Left Direction: . 6

Right Direction: . 6

Backward Direction: . 7

2.1.3 Global control by using on-board 4G smartphone 7

. 7

2.1.4 Live streaming video vision by using UDP 7

. 7

. 8

. 8

. 8

2.1.5 Smartphone to Controller Board USB Connection 8

. 8

2.2 Hand Gesture Models . 8

. 8

. 9

. 9

2.3 Kalman Filter . 10

. 10

. 11

2.4 Communication . 11

2.4.1 XBee . 11

2.4.1.1 The Advantages of Zigbee over other Technologies 11

. 11

2.4.1.2 Zigbee for Quadcopter-User Communication 11

. 11

. 11

. 11

. 12

2.5 Android . 13

. 16

2.5.1 Leap Motion . 17

2.6 Arduino . 21

. 21

2.7 Navigation Design . 22

2.8 Data Communication Design . 26

. 27

. 27

2.9 Sources Explained . 29

Contents viii

2.9.1 Client . 29

. 29

2.9.2 Server . 30

. 30

. 31

. 33

. 34

. 35

2.10 3D Model Design . 37

. 37

2.11 Gyroscope Sensor . 38

. 38

. 38

. 39

. 39

2.12 An unexpected tragedy . 40

. 40

2.12.1 Temperature Sensitivity of PLA plastic used in 3D printer 40

. 40

2.12.2 Strength of PLA plastic . 40

. 40

2.13 New Body Design . 41

. 42

2.14 Circuit Design . 42

2.14.1 Circuit Design Version 1 . 42

2.14.2 Circuit Design Version 2 . 43

2.15 PCB Design . 44

. 44

. 44

2.16 Safety Design . 47

2.16.1 Emergency Button . 51

. 51

. 51

. 52

. 54

2.16.2 Control Box . 54

2.16.3 The Wooden Frame . 57

2.16.3.1 Introduction . 57

. 57

. 58

2.16.3.2 Use . 58

. 58

2.16.3.3 Materials Used . 58

2.16.3.4 Structure . 59

. 59

. 59

. 59

Contents ix

. 59

. 59

2.16.3.5 Problems Faced . 60

. 60

3 Implementation 61

3.1 Balancing the Quad-copter . 61

3.2 Custom Circuit Board . 61

. 61

3.3 Setting up Quadcopter for flight . 61

. 61

3.4 Final Product . 62

. 62

3.5 PCB . 63

3.6 Frame . 63

3.7 Module Requirement and Performance . 63

3.7.1 Transmitter . 63

3.7.1.1 C Sharp Ground Application 63

. 63

3.7.1.2 Remapping the Pitch . 63

. 63

. 64

. 64

. 64

3.7.1.3 Remapping the Roll . 64

. 64

. 64

. 64

. 65

3.7.1.4 Remapping the Thrust 65

. 65

. 65

. 65

. 65

. 65

3.7.1.5 Emergency . 65

3.7.2 Control Board . 66

. 66

. 66

. 66

3.7.2.1 Balancing the Quad-copter 66

3.7.2.2 Tuning Elevation . 66

. 66

3.7.3 Tuning Aileron . 67

. 67

3.7.4 Tuning Rudder . 67

. 67

Contents x

3.7.4.1 Blocking Rudder Change 67

. 67

. 67

3.7.5 ESC . 68

3.7.5.1 Propeller . 68

3.8 Air Flow . 68

4 Results & Discussion 83

4.1 Custom 3D Designed Body . 83

. 83

. 83

4.1.1 Version 1 - PLA Plastic, Unchanged print 83

. 83

. 83

4.1.2 Version 2 - PLA Plastic, Modified print 83

. 83

. 84

4.1.3 Version 3 - Carbon Fiber Body . 84

. 84

4.2 Leap Motion Library for Gesture Control 84

. 84

4.3 Payload Capability calculation using MATLAB 84

. 84

4.4 Weight Calculation of the Quadcopter. 85

4.5 Serial Communication Protocol Development Trials 86

. 86

4.5.1 Trial 1 . 86

. 86

. 86

Disadvantages . 87

4.5.1.1 Packet Transfer Time . 88

. 88

. 88

4.5.2 Trial 2 . 88

. 88

Disadvantages . 91

4.5.2.1 Helper Function - Converting String to Number 91

4.5.2.2 Packet Transfer Time . 91

. 91

. 91

. 92

4.5.3 Trial 3 - Applied Method . 92

. 92

. 92

4.5.3.1 Packet Transfer Time . 92

. 92

. 93

Contents xi

. 93

4.6 IR Emergency Button Trials . 93

. 93

. 93

4.6.1 Trial 1 - Code Message Driven . 93

. 93

. 94

. 95

The problem: . 95

4.6.2 Trial 2 - Interrupt Driven . 98

. 98

4.6.3 KK Control Board Malfunction . 98

. 99

. 99

4.7 Setting up quadcopter for flight . 99

. 99

4.8 Final Product . 100

. 100

4.9 Tests Carried Out . 100

5 Project Management 101

5.1 Updated Cost Table . 101

5.2 Gantt Chart . 101

5.3 Tasks . 103

6 Conclusion 113

. 113

. 113

. 113

A C 114

B Hardware used Manuals 117

Bibliography 172

List of Figures

1.1 A leap motion device with 3D coordinates. 2

1.2 Lives are lost as fast-aids do not reach on time. 3

2.1 The system diagram of the project. 4

2.2 X configuration forward motion of quadcopter. 6

2.3 Left motion of quadcopter in X configuration 6

2.4 X configuration forward motion of quadcopter. 7

2.5 Left motion of quadcopter in X configuration 7

2.6 A custom designed and programmed AtMega 328 chip will act as a inter-
mediate connector to decode the signals coming from the android smart-
phone through USB and send appropriate commands to the control board. 9

2.7 The figure shows how an AtMega 328 is connected to the FTDI USB-
Serial converter chip. [2] . 9

2.8 Moving the hand upwards in the z-axis in front of the Leap motion should
provide us with a +ve change in z value. 10

2.9 Moving the hand downwards in the z-axis in front of the Leap motion
should provide us with a -ve change in z value. 10

2.10 Moving the hand towards the body can give us -ve value of movement in
y-axis. 10

2.11 A +ve value in x-axis can be obtained when the user moves the hand to
the right. 10

2.12 A -ve value in x-axis can be obtained when the user moves the hand to
the left. 10

2.13 Moving the hand away from the body can give us +ve value of movement
in y-axis. 10

2.14 Zigbee mesh network configuration. 12

2.15 Local IP Address: it shows the IP address given to the device inside the
LAN . 13

2.16 Views to Display the Mode and the Control 15

2.17 Leap Control in Hand-gesture Mode . 17

2.18 Way-Point Initial Concept . 23

2.19 Split Coordinate Array . 24

2.20 JSON Array Concept . 25

2.21 Socket Communication in JAVA . 28

2.22 A arm of the quadcopter is being printed by the MakerBot. 38

2.23 Explanation of the traditional 3 Dimensional rotation movements. These
movements were defined for airplanes but as time passed by, these same
terminologies were adopter by quad-copters although quadcopters don’t
bend their wings for roll(aileron). 38

xii

List of Figures xiii

2.24 The gyroscope sensor is designed to measure the rotation per second and
the angle of rotation of the object its mounted to when it experiences an
imbalance.Below is a typical 3-axis gyroscope ITG3200. [6] 39

2.25 These forces are exerts the spring and this movement generates very low-
current electrical signal that is amplified and later read by the micro-
controller. [6] . 39

2.26 The table shows strength of the plastic used for 3D printing in our lab
according to different standards. [3] . 40

2.27 Turningy Talon Carbon Fiber Quadcopter Frame 41

2.28 Motor Brackets Holder . 41

2.29 A circuit diagram of our prototype board design version 1. 43

2.30 A circuit diagram of our prototype board design version 2. 44

2.31 A x-ray vision of our prototype board design version 1. 45

2.32 A x-ray vision of our prototype board design version 2. 45

2.33 A x-ray vision of our prototype board design version 3. 46

2.34 A x-ray vision of our final board design version 4. 47

2.35 Prop-guard Design on White Board . 48

2.36 Prop-guard Built with Notepaper . 48

2.37 Prop-guard CAD Design . 49

2.38 Prop-guard Cutting . 50

2.39 Prop-guard Built with Styrofoam . 50

2.40 Emergency Button Concept . 51

2.41 Peter Jakab on his website gives a schematics of electronic circuit to re-
ceive and transmit infrared pulses using IR LED and IR detector.[12] The
circuit uses a 555 Timer Multivibrator IC tuned to generate timed pulses
with the help of capacitor and resistor frequency selective network. 52

2.42 RC-5 Philips Protocol [7] uses pulse position modulation to send either a
1 or a 0 to the receiver. If the pulse is in the first half of 1778 micro-second
then a 0 is received and if the LED is ON for the second 889 micro-seconds,
then a 1 is received. The whole information packet consists of 14 bits and
the starting three bits are meta-data bits and five bits after meta-data
bits are to selects one of 25 = 32 possible systems. The bits after that
are to select one of the 26 = 64 commands. Therefore, RC-5 protocol is
limited to have 64 commands and 114 millisecond command transfer rate. 53

2.43 Remote for Emergency Power . 54

2.44 IR Receiver Module . 54

2.45 Designing the Box for Controller Board, PCB 55

2.46 Improved design for the Box . 56

2.47 Protective Box Built . 57

2.48 Protective Box Close Usp . 57

2.49 Frame Design . 59

3.1 Quad-Copter Testing . 69

3.2 ESC Armed Indication . 69

3.3 PCB Acting as the Receiver . 70

3.4 PCB with USB Plugged . 70

3.5 Checking Motor Response . 71

3.6 Test Flight in Home . 71

List of Figures xiv

3.7 Test Flight in Home . 72

3.8 Emergency Button Test . 72

3.9 Test Flight in Home . 73

3.10 Emergency Button Test . 73

3.11 Emergency Button Test . 74

3.12 Balancing the Quadcopter . 74

3.13 Quad-copter Balanced . 75

3.14 Hand-Gesture Mode in Quad-copter . 75

3.15 Hand-Gesture Mode in Quad-copter . 76

3.16 Air Flow Test . 76

3.17 Air Flow Test . 77

3.18 Frame . 78

3.19 Frame . 78

3.20 Frame . 79

3.21 Frame Corner . 79

3.22 Frame Holding Screw . 80

3.23 Balance Pipe Plug . 80

3.24 Balance Pipe Holder . 81

3.25 Balance Pipe . 81

3.26 Balance Pipe . 82

4.1 Moving the hand away from the body can give us +ve value of movement
in y-axis. 85

4.2 The figure explains the network protocol which was designed by us for
sending flight data from Android USB to micro-controller. 92

4.3 The excel file with all the button results and the terminal screenshot. . . 95

4.4 The excel file with all major button IR signal results. 95

4.5 After importing the IRremote library using the Arduino IDE, the library
is located in C : \Users\Muhammad\Documents\Arduino\libraries. . . 96

4.6 Open the ’IRremoteInt.h’. 96

5.1 The table shows all the parts which were bought from various sources and
countries including parts which were bought and brought personally from
canada. 101

A.1 Arduino Uno Pinout . 115

A.2 C Data Type . 116

B.1 Huawei Smartphone . 118

List of Tables

xv

Abbreviations

ESC Electronic Speed Controller

PWM Pulse Width Modulation

LDR Light Dependent Resistor

OP AMP Operational Amplifier

IR Infra Red

RPM Revolutions Per Minute

PROP Propeller

PCB Printed Circuit Board

CCTV Closed Circuit Televison

PAN Permanent Account Number

IEEE Institute (of) Electrical (&) Electronics Engineers

GND Ground

AIL Aileron

ELE Elevation

THR Thrust

RUD Rudder

POT Potentiometer

CHAR Character

IP Internet Protocol

WAN Wide Area Network

xvi

Symbols

a distance m

V Volts W (V)

C Current W (A)

bps Bits Per Second bps

g Gram g

Kg Kilogram Kg

ms Millisecond ms

bits/packet Bits Per Packet bits/packet

P power W (Js−1)

ω angular frequency rads−1

xvii

Dedicated to our Mothers

xviii

Chapter 1

Introduction

1.1 Project Background

The number of researches and developments on the unmanned aerial vehicles have

increased over the past years. Many hobbyists and robotics enthusiasts are particularly

interested in quadcopters because of their ability to hover in place, take-off and land

vertically. [4] People can easily now buy and assemble a quadcopter with low cost.

Within seconds a quadcopter can lift-off reach a point and land back. This ultra fast

response and ease of control make the quadcopter ideal for reaching areas dangerous for

humans and performing tasks.

Parallel to this, the field of Human-Computer Interaction has been a growing field

in the past few years due to the introduction of innovative interaction devices such as

Nintendo Wii Remote and Microsoft Kinect. The idea of using gestures as a mean of

interaction has become the recent trend as it makes the experience more natural and

hence the possibility of application.

Quadcopter: The term quadcopter or quadrotor comes from the four narrow chord

propellers used by the air vehicle in order to maneuver in air. The quadcopter uses these

four propellers to push the air downwards in order to generate lift force. It maneuvers

by varying the speeds of these four motors.

Leap Motion: In 2012, the Leap Motion controller was introduced. Leap motion

comes with a 150 degree field of view and makes use of a depth sensor to follow and

scan the hand features up to 1/100th of millimeter. This extremely precise control gives

1

Chapter 1. Introduction 2

us the opportunity to use it as our interface over Kinect which tracks body instead of

hand since our gestures will be mainly finger movements.

Figure 1.1: A leap motion device with 3D coordinates.

The past few years there have been extensive research on autonomous micro-aerial

vehicles. The application ranges from hobby to serious circumstances.

Quad Copter Application XPROHELI developed quad copter that is used to take

high quality video and photography. http://www.youtube.com/watch?v=HoQQlRzybmA#

t=14 This video was taken using the XPROHELI quad copter.

FAE developed tri copter that is used to take long range aerial surveillance over

oil field. http://www.youtube.com/watch?v=a5H5paygWQw&feature=youtu.be Quad-

copter has the potential to be used in a variety of application and we decided to work

on a case where quad copter deserves to be used; to save human lives where time is of

paramount.

1.2 Problem Discussion

In this stone hearted world, everyday accident happen and people die. These lives

can be saved by timely medical response. But the response faces countless obstacles

sometimes like traffic jams, remote places, radiation etc. This is a growing problem

causing engineers and specialists to think and come up with different solutions.

UAE itself has a mortality rate of about 37 per 100,000 which is one of the highest

in the world. [1] This mortality rate can be further skimmed down by providing timely

first aid kit to seriously injured people.

http://www.youtube.com/watch?v=HoQQlRzybmA#t=14
http://www.youtube.com/watch?v=HoQQlRzybmA#t=14
http://www.youtube.com/watch?v=a5H5paygWQw&feature=youtu.be

Chapter 1. Introduction 3

Figure 1.2: Lives are lost as fast-aids do not reach on time.

So all in all, our problem statement is how to provide quick and timely emergency

assistance without the restriction of the range by using low-cost quadcopter.

Chapter 2

Design

2.1 Project Description

We proposed a system which is complete package and will solve all the problems of

providing quick emergency assistance. The proposed system was widely accepted by the

faculty members and approved.

Figure 2.1: The system diagram of the project.

Our system has a Quadcopter with a gyro control chip which controls the basic

maneuvers for the UAV and we propose to build a custom designed chip to decode

the signals coming from the on-board android smartphone and send commands to the

controller chip. We used a android smartphone to provide the quadcopter with GPS,

Camera, and 4G internet connection. So this quadcopter is now capable of performing

4

Chapter 2. Design 5

completely unmanned flight and be controlled using http requests coming to it through

4G connection. The quadcopter also provides a http feedback to the computer about

its GPS position. The GPS can also be used to make a flight plan for the quadcopter.

The on-board mobile also provides a UDP live stream of the camera vision and can be

controlled using.

Lets take a typical emergency assistance scenario and apply our proposed solution

to it. A call comes to the police about a car accident that has happened on a highway

in Abu Dhabi. This is emergency case it might take several hours for the police to

arrive and analyze the situation. The police places a pin on the map in the quadcopter

software in computer. The computer sends the http request to the quadcopter to move

to that specific location. The quadcopter immediately starts up and goes to the GPS

location. This is done with a feedback loop which calculates the current GPS location

and the required GPS location. While all of this is done, the policeman can see the

current location of the quadcopter on the map. When the quadcopter reaches the end of

its destination, the policeman turns on the gesture control mode and starts controlling

the movement of the quadcopter precisely using hand. Now the policeman can access

the situation and can also possibly drop the first aid kit if the situation is too serious.

2.1.1 Using a UAV for agility and accessibility

Unmanned Air Vehicles are light, fast and can be designed to carry the essential

aid equipment. Along with that unmanned vehicles can be used to perform critical

operations in areas where human life cannot be risked. Furthermore, quick response

to a distress call can differentiate between life and death of a person. Therefore, air

emergency medical assistance is needed very quickly in some cases and the delay cased

by set-up and start of manned vehicles cannot be afforded at this point.

2.1.2 Use of a quadcopter for ease of control and high payload delivery

With the use of four propellers pushing the air downwards with immense speed, a

typical quadcopter is capable of lifting high payloads. UAVs for search and rescue oper-

ations are required to be small and at the same time carry high payloads. Quadcopter

is perfect for such kinds of ease of control applications because of its usage of four high

rpm brushless motor run propellers. These brushless motor speeds can be intelligently

varied to provide 6 degrees of freedom by sensing the gyroscopic values of Pitch, Yaw,

and roll which.

Chapter 2. Design 6

The quadcopter can be controlled using two types of configurations, one is the X

configuration and the other is the + configuration. For a very stable flight and camera

view being not blocked, we propose to use a X configuration quadcopter.

Figure 2.2: X configuration for-
ward motion of quadcopter.

Figure 2.3: Left motion of quad-
copter in X configuration

Forward Direction: By speeding up the back motors, a forward direction motion

can be accomplished. This makes the thrust of the motors at an angle to the z-axis.

The thrust has force components in the weight direction to balance or cancel the weight

and a unbalanced forward component to make the quadcopter go forward.

Left Direction: By speeding up the right motors, a left direction motion can be

accomplished. The thrust has force components in the weight direction to balance or

cancel the weight and a unbalanced forward component to make the quadcopter go left.

Right Direction: By speeding up the left motors, a right direction motion can be

accomplished. The thrust has force components in the weight direction to balance or

cancel the weight and a unbalanced forward component to make the quadcopter go right.

Chapter 2. Design 7

Figure 2.4: X configuration for-
ward motion of quadcopter.

Figure 2.5: Left motion of quad-
copter in X configuration

Backward Direction: By speeding up the front motors, a backward direction motion

can be accomplished. This makes the thrust of the motors at an angle to the z-axis.

The thrust has force components in the weight direction to balance or cancel the weight

and a unbalanced backward component to make the quadcopter go forward.

2.1.3 Global control by using on-board 4G smartphone

Usually quadcopters have a limited range radio link but emergency assistance should

not have limited range of control. It was decided to use 4G network for control and

communication with the quadcopter as 4G network is accessible from within 35Km range

of a cellular tower. Furthermore, a typical city is divided into cells and at almost each

node a telecommunication tower is located. This is a huge advantage for our quadcopter

since it can have a connection to base control all around the city where the 3G radiation

pattern is in range. A smartphone will be mounted on the quadcopter for providing

a 4G internet connection. The internet connection on the quadcopter can be used for

several things such as providing the GPS location, video stream, and controlling the

quadcopter maneuvers.

2.1.4 Live streaming video vision by using UDP

Video streaming of quadcopter’s vision is possible by using the on-board android

smartphone. An app it to be designed in such a way that it streams video back to the

Chapter 2. Design 8

base station by use of UDP. This is possible through 4G connectivity since use of WiFi

for such long range is not advisable.

p A video stream is acceptable if there is any fault of packages lost in the way. It

is because if during the video streaming the packages get lost due to the router being

overloaded for instance then the video streaming can still be resumed with a reduced

quality.

The TCP/IP protocol would force the video stream to wait until the dropped packages

are found to resume processing newer packages. The point that is usually misunderstood

is that when few packages are lost it doesn’t mean a whole frame is lost but rather few

pixels from a certain frame are lost and hence waiting for these lost pixels to come back

is a waste since the video stream has already moved on to new frames. However TCP

could have been a good option if the case was about recorded video streaming since

when a package is lost the system pauses the frame until the all the data for the next

frame has been collected in the buffer giving the term ‘buffering’.

Therefore, we decided to use UDP for our live video streaming.

2.1.5 Smartphone to Controller Board USB Connection

The receiver in our schematics is going to be a smartphone which will be using 4G

internet to receive the data. The smartphone onboard the quadcopter will act as client

while the PC with the user will act as the server to send the controls. The data will

then be passed to an Atmega328 chip using USB-Serial FTDI chip that will in turn send

the flight data to controller board. The application will send byte array through serial

to Atmega328 Chip that will contain the flight values such as aileron value to control

the roll, elevation value to control the elevation angle with horizontal, rudder value to

control the yaw movement, and thrust value to control lift force. [?]

2.2 Hand Gesture Models

In order to control the quad-copter using a leap motion device, a model of the hand

gestures should be made in order to approximate the finger positions in three dimensional

space.

Chapter 2. Design 9

Figure 2.6: A custom designed and programmed AtMega 328 chip will act as a
intermediate connector to decode the signals coming from the android smartphone

through USB and send appropriate commands to the control board.

Figure 2.7: The figure shows how an AtMega 328 is connected to the FTDI USB-Serial
converter chip. [2]

Leap Motion provides a library to use for creating hand objects and approximates

the finger positions in the 3 dimensional space. According to these positions of the

fingers, we can code the Leap Motion to generate http requests to the android on the

quad-copter through internet.

We will program a java application to detect the hand gestures and then according

to the gesture input, a particular http request will be made to the android. Eclipse

IDE will be used to program the desktop application which will provide the internet

connection to the quad-copter.

Chapter 2. Design 10

Figure 2.8: Moving the hand up-
wards in the z-axis in front of the
Leap motion should provide us with

a +ve change in z value.

Figure 2.9: Moving the hand
downwards in the z-axis in front of
the Leap motion should provide us

with a -ve change in z value.

Figure 2.10: Moving the hand to-
wards the body can give us -ve value

of movement in y-axis.

Figure 2.11: A +ve value in x-
axis can be obtained when the user

moves the hand to the right.

Figure 2.12: A -ve value in x-
axis can be obtained when the user

moves the hand to the left.

Figure 2.13: Moving the hand
away from the body can give us +ve

value of movement in y-axis.

.

2.3 Kalman Filter

There is a module in the controller board that processes the huge amount of samples

the microprocessors take from the sensors. To put that into perspective let’s say one have

a micro-controller that has a clock speed of 15 MHz, that means the micro-controller

will be taking 15 million samples from the sensor every second. All this amount of data

is meaningless if the right data is not processed from this, Kalman Filter is a sequence of

steps that will initially remove the sampled data that are purely noise and then average

out the important data to pick the most appropriate one for input.

Chapter 2. Design 11

The leap motion captures about 200 frames per second or more depending upon the

computer processing power. This is huge data speed and sudden errors can cause the

system to In our project, we will implement a Kalman Filter on the hand gesture data.

2.4 Communication

2.4.1 XBee

2.4.1.1 The Advantages of Zigbee over other Technologies

We are all aware of standard and popular technologies like Bluetooth and Wifi which

are perfect for mid to high data rates for voice, video, etc. However, the industry is not

quite satisfied to use these technologies in applications like sensors arrays and control

up unitll now. Application requires less lagging, very low power consumption for long

battery lives and for large device arrays.

2.4.1.2 Zigbee for Quadcopter-User Communication

The industry is beginning to realize a new mode of communication; Zigbee Commu-

nication. The main advantages include low power consumption and unlike Wi-Fi ; it

doesnt depend on internet. Hence if the internet is down due to any reasons; which is

very common; than the data flow will vary.

Our project will be using this device for sending the user commands to the micro-

controller located in the controller board of flying quadcopter. It is in application like

this that the power of Zigbee is heavily felt. Since our copter will require real time

data flow for a smooth flights and manouvers of the copter, we cannot afford any lag of

data transfer; which is a grey area for both 3g and Wi-Fi. These two standard mode of

connection depends on the traffic while our implementation of Zigbee is one to one. At

all point of time the chip is ready to transfer data.

Zigbee is popular for other important reasons as well; it is easy to set up and it

consumes very low power. Once again notice that our project has significant limitation

when it comes to power. The battery we are carrying is heavily drained by the four

motors so quickly that the flight time can barely carry it to a desired location. On

top of that if we try to implement a Wi-Fi module or RF module for communication;

the flight time will only get smaller. A Zigbee; on the other hand; consumes almost

Chapter 2. Design 12

innoticable amount of power which gives the second reason of why it is an ideal choice

for the purpose of communication between the quadcopter and the user.

Figure 2.14: Zigbee mesh network configuration.

”In June 2009, the Continua Health Alliance, a consortium of health technology

vendors led by Intel, announced that it was endorsing ZigBee as its low power local area

network standard, bypassing rival low power technologies Sensium, ANT+, BodyLAN

(used in Nike+) and Z-Wave, as well as traditional WiFi and RF technologies. ”

Chapter 2. Design 13

2.5 Android

Figure 2.15: Local IP Address: it shows the IP address given to the device inside the
LAN

Chapter 2. Design 14

This the IP address that we need to know when trying to connect the smartphone on

the quadcopter from the user phone/laptop/pc. This was achieved in the following code

from. It is achieved in the following code:

1 //get ip address using Wi-Fi manager in int format..

2 WifiManager wifiManager = (WifiManager) activity

3 .getSystemService(activity.WIFI_SERVICE);

4 WifiInfo wifiInfo = wifiManager.getConnectionInfo();

5 int ipInt = wifiInfo.getIpAddress();

6

7

8 //convert the int to proper String format for the IP

9 String ipStrng = String.format("%d.%d.%d.%d",

10 (ipInt & 0xff),

11 (ipInt >> 8 & 0xff),

12 (ipInt >> 16 & 0xff),

13 (ipInt >> 24 & 0xff));

14

15 //show the ip in our TextView

16 peace.setText(ip_value, ipStrng);

Code 1: ServerUDP.java

As with all other threads and services; the ServerUDP is initiated in the MainActivity

as shown below:
1 ServerUDP serverUdp = new ServerUDP(3030);

2 serverUdp.uiQuad(activity, aileron_value, elevation_value,

3 thrust_value, rudder_value, connection_value, mode_value,

4 ip_value, global_ip_value, reply_value);

5 serverUdp.start();

Code 2: MainActivity.java

Find it here: server–¿src–¿server–¿MainActivity.java

In order for the thread to talk to the text views in the MainActivity I passed the text

views to the thread through the uiQuad() to avoid re-initiating these views inside this

thread.

Chapter 2. Design 15

Figure 2.16: Views to Display the Mode and the Control

Chapter 2. Design 16

The text views essentially reassures and confirms packets being received and the state of

connection. This helps one to be certain that whether it is safe to approach the copter

and un-plug the battery and also confirm if it is receiving the control values from the

ground station.

Mode view tells in which block the arduino is currently on; the possible modes we

have is the hand-gesture mode and emergency mode. Aileron view shows how much

aileron value is being sent from the user, Elevation value show how much elevation value

is being sent from the user, Thust value shows how much thrust value is being sent from

the user and finally Rudder value shows how much rudder value is being sent from the

user. The data is continuously read from the input stream using receive(DatagramPacket

dp) and sent to the Atmega328P using send(byte[] msgAr).

1 while (true) {

2 ds.receive(dp);

3 if (dp != null) {

4 // send the data received to usb

5 usb.send(msgAr);

6 // show the values received in the views

7 updateUi();

8 }

9 }

Code 3: ServerUDP.java

1 private void updateUi() {

2 byte[] data = dp.getData();

3 if (data[1] == Character.valueOf(’a’)) {

4 peace.setText(ConnectionValue, "Connected");

5 peace.setText(ModeValue, "Emergency");

6 } else if (data[1] == Character.valueOf(’b’)) {

7 peace.setText(ConnectionValue, "Connected");

8 peace.setText(ModeValue, "Slow Speed");

9 else if

10

11 peace.setText(ThrustValue, String.valueOf(data[4]));

12 peace.setText(RudderValue, String.valueOf(data[5]));

13

14 }

Code 4: ServerUDP.java

Chapter 2. Design 17

We did a simple if-else statements to find the state from the incoming packets and

update the Mode view. Then the bytes are converted to string for display using

String.valueOf(byte b)

Finally for safety a connection timeout is setup inside the while(true) loop which starts

a timer as soon as it finds the input stream empty and runs it until it finds any data

there and when the time reaches 3 seconds there is an exception to kill the flight

1 while (true) {

2 try{

3 ds.setSoTimeout(3000);

4 ds.receive(dp);

5 ...

6 } catch (SocketTimeoutException es){

7 ...

8 usb.send(kill);

9 } catch (IOException e) {}

10 }

2.5.1 Leap Motion

Figure 2.17: Leap Control in Hand-gesture Mode

Leap sdk provides some powerful libraries that basically takes the raw data and makes

meaning out of them so that developers may use it for their own application. Among

them we used the Controller class and Frame class. The hand goes through states at

every second and the leap motion is capturing the state of hand every microsecond and

they get processed by the Controller. These data can be obtained as Frames which we

Chapter 2. Design 18

use it to deduce gestures. Now to access these incoming frames from the controller and

react to these frames we use a Listener which simply means that within every given

interval check the frame and act according to the current frame.

1 /*

2 The most important elements declared for the gesture detection

3 */

4 Frame currentHandFrame;

5 SampleListener listener;

6 Controller controller;

7 /*

8 The system calls this function within the given interval...

9 */

10 this.LeapFrameUpdate.Interval = 50;

11 this.LeapFrameUpdate.Tick += new System.EventHandler(this.LeapFrameUpdate_Tick);

12 /*

13 At the loading of the ‘Form’....

14 Create a sample listener and controller

15 */

16 Controller controller = new Controller();

17 SampleListener listener = new SampleListener();

18 /*

19 Have the sample listener receive events from the controller

20 */

21 controller.AddListener(listener);

22

23 LeapFrameUpdate.Start();

Every 50 millisecond we extract the frame and analyze it. Analysis includes the detection

of the number of hands and fingers, then we deduce the roll, pitch and other values from

the movement of the first hand. These values are then updated on the user interface

and sent to the receiver smart phone through Datagram socket.

Chapter 2. Design 19

1 /*

2 Inside LeapFrameUpdate_Tick() that acts as a listener we start by

3 detecting hand and do the calculation based on first hand

4 */

5 currentHandFrame = controller.Frame();

6 Hand hand = frame.Hands[0];

7 /*

8 Check if the hand has any fingers

9 */

10 FingerList fingers = hand.Fingers;

11 /*

12 Calculate the hand’s average finger tip position

13 and display to the user interface...

14 */

15 Leap.Vector avgPos = Leap.Vector.Zero;

16 foreach (Finger finger in fingers)

17 {

18 avgPos += finger.TipPosition;

19 }

20 avgPos /= fingers.Count;

21 /*

22 Show the 3D coordinate position of hand in text box

23 */

24 PositionBox.Text = hand.PalmPosition.ToString();

25 /*

26

Get the hand height from sensor and check its valid range and update

progress bar

→

→

27 */

28

Thrust = (int) ((((500.0 - hand.PalmPosition.y) / 500.0) * 100.0) +

50.0);

→

→

29 positionProgress.Value = (int)hand.PalmPosition.y;

30 /*

31 We load the arrow image and define a point that will act as

32 an anchor for the arrow rotation

33 */

34 System.IO.Stream file = thisExe.GetManifestResourceStream("OregoController.Properties.Resources.arr.png");→

35 System.Drawing.Point p = new System.Drawing.Point();

36 p.X = 128;

37 p.Y = 128;

Chapter 2. Design 20

To have a more natural understanding of our hand position that the leap motion detected

we thought of using arrows. The rotation of arrow is mapped to the values that were

calculated from each frames; roll, pitch, yaw.

1 /*

2 Float convert the pitch value and apply on the arrow...

3 */

4 float pitchVal = (direction.Pitch * 180.0f / (float)Math.PI);

5

pictureBox2.BackgroundImage = RotateImage(global::OregoController.Properties.Resources.arr,

p, pitchVal);

→

→

6 /*

7 Float convert roll value and apply on the arrow...

8 */

9 float rollVal = (normal.Roll * 180.0f / (float)Math.PI);

10

pictureBox3.BackgroundImage = RotateImage(global::OregoController.Properties.Resources.arr,

p, rollVal);

→

→

11 /*

12 Float convert the yaw value and apply on the arrow...

13 */

14 float yawVal = (direction.Yaw * 180.0f / (float)Math.PI);

15

pictureBox4.BackgroundImage = RotateImage(global::OregoController.Properties.Resources.arr,

p, yawVal);

→

→

Initially a tcp socket was used but after discovering the more real time responsiveness

of a udp socket we implemented our communication through Datagram Socket. Its

also much easier to implement as the only thing it requires is the byte array and the

destination address. As one may notice the Datagram works in a clever way; they simply

spray out data in the network where each of the data includes the destination address

and the right receiver will pick it up for himself.

Chapter 2. Design 21

1 /*

2 Send values to receiver smart phone on the quad-copter...

3 */

4 byte[] packet = new byte[] {

5 0xAA,

6 Convert.ToByte(’a’),

7 Convert.ToByte(Aileron),

8 Convert.ToByte(Elevation),

9 Convert.ToByte(Thrust),

10 Convert.ToByte(Rudder),

11 0xAA

12 };

13 UdpClient udpClient = new UdpClient()

14 udpClient.Send(packet,7);

2.6 Arduino

The Atmega328P in our PCB reads the data in the serial format and decides which

mode to enter and consequently what values to forward to controller board.

Any data received in the usb triggers the void serialEvent() function and this is

where we take the packet, hold it and then analyze it as to what mode to go. The

following analysis is taking place inside the void serialEvent().

1 while (Serial.available()) {

2 char commands[7];

3 delay(5);

4 Serial.readBytes(commands,7);

5 if(commands[0] == commands[6]){

6 // Valid command detected

7 if((char)commands[1] == ’a’){

8 // Emergency State

9 CurrentState = 0;

10 }

11 ...

12 else{

13 Serial.println("Wrong Command!");

14 Serial.println(commands);

15 }

Chapter 2. Design 22

Everything starts to change at this point, no more the Atmega328P is sending the

same fixed value of 93, 93 ,93, 54 and 93 for Aileron, Elevation, Thrust and Rudder

respectively. It looks at the orientation of the hand to determine Aileron , Elevation

and Rudder while the distance of the hand from the Leap to determine the Thrust.

Hence this is also a very tensed moment for those standing nearby since it may be

un-predictable at times as to what the Leap will mistakenly send if the hand position

suddenly falls.

1 else if((char)commands[1] == ’c’){

2 // Free Hand Guesture Control State

3 CurrentState = 2;

4 AileronValue = commands[2];

5 ElevationValue = commands[3];

6 ThrustValue = commands[4];

7 RudderValue = commands[5];

8 }

In the hand gesture we put our current state value to ‘2’ and extract the Aileron ,

Elevation , Thrust and Rudder from array packet 2, 3, 4 and 5.

2.7 Navigation Design

The aim was to send way-point coordinates from user smartphone to quad-copter smart-

phone for navigation purpose.To achieve the purpose I used JSON to send the coordi-

nates to avoid developing any protocol for parsing it as JSON is already a standard and

well developed protocol. Initially the idea was to upload the coordinates form the user

to the cloud and this coordinates will stay safe there; from there the smartphone on the

quad-copter will retrieve the coordinates when required; come to think of it; it will also

save memory space in the quadcopter even it is very insignificant. Another benifit one

can think of is that if the battery of the smart-phone on the copter dies the coordinates

will still remain in the cloud and later a history of checkpoints selected and visited may

be demonstrated.

Chapter 2. Design 23

Figure 2.18: Way-Point Initial Concept

The only other option before json was to convert the coordinates into a string separated

with a “.” so that in the other side it can be parsed by splitting the string at the

occurance of dots. After splitting it can be stored in an array. 2.19

Chapter 2. Design 24

Figure 2.19: Split Coordinate Array

Finally this became more simple with JSON. JSON allows the use of multiple arrays

with key word that can easily extracted on the other side by referring to the key word

2.20.

Chapter 2. Design 25

Figure 2.20: JSON Array Concept

The overall logic are the following:

1. User sends the coordinates

2. Quad-copter receives the coordinates

3. The coordinates are parsed

4. The coordinates are stored

5. The coordinates are used for navigation

Chapter 2. Design 26

1 //Store lat and lng in separate json array at the client...

2 JSONArray latJsonArray = new JSONArray();

3 latJsonArray.put(lat);

4

5 //Combine the two separate json array in

6 //a json object...

7 JSONObject jsonObject = new JSONObject();

8 jsonObject.put("lat", latJsonArray);

9 jsonObject.put("lng", lngJsonArray);

10

11 //extract the json array and store in an array list

12 //of coordinates at the server...

13 JSONObject jsonObject = new JSONObject(message);

14 JSONArray lngJsnArray = jsonObject.getJSONArray("lat");

15 JSONArray latJsnArray = jsonObject.getJSONArray("lng");

16

17 for (int i = 0; i < latJsnArray.length(); i++) {

18

Coordinates coord = new Coordinates(latJsnArray.getDouble(i),

lngJsnArray.getDouble(i), i);

→

→

19 coordList.add(coord);

20 }

21

22 //Calculate bearing for navigation...

23 Location destination = new Location("Destination");

24 destination.setLatitude(coordList.get(1).getLatitude());

25 destination.setLongitude(coordList.get(1).getLongitude());

26 double bearing = currentLocation.bearingTo(destination);

2.8 Data Communication Design

The challenge was to control the quad-copter from distance which in other word meant

wireless communication. The wireless communication is one of the fundamental ele-

ment that makes controlling quadcopter or any hobby toys something very entertaining

and consequently various people implemented different technologies based on the per-

formance and the goal they wished to achieve.

There are various options to achieve that a wireless communication:

• Cellular Communication

• Internet Protocol

Chapter 2. Design 27

• Bluetooth Communication

• Xbee Communication

• Bluetooth

Classic Bluetooth is for “battery-intensive” operations such as streaming and com-

municating between devices whereas Bluetooth Low Energy is for application with low

power consumption. Wi-Fi Direct devices can connect to each other without having

to go through an accesspoint, so no router needed. This technology allows Wi-Fi direct

installed devices to see other devices in the network and find out what each of these

devices are; for instance there could be two Wi-Fi direct devices showing up the in the

list of Wi-Fi direct devices in a smart-phone but is very vague as in what kind of devices

they since the only thing that we are aware is that it has somewhere near the Wi-Fi

adapter this chip integrated. Hence the importance of knowing it’s service. Service I

believe is what the device is capable of. Some of the applications of this technology are

the following:

• Print from laptop or smartphone to a wireless printer

• Store images with someone across a room.

• Send video from phone to the TV.

Android has their own library of classes and interfaces(API) which lets us discover

the available devices and know what the available devices can perform(as in image stor-

ing, video sharing or printing) called Direct Device Discovery and Service Discovery.

Internet Protocol is a very general concept that essentially means data being trans-

ferred between a network of devices. The difference starts in the technique of this data

transferred; is it cable or signal.

This internet technology has been implemented wireless by the company called “Wi-

Fi”. Nowadays all router has a Wi-Fi adapter that generates a 2.4 GHz RF signals

to create a LAN. This router also acts as the ‘gate-way’ between this LAN and other

LANs aka the Web. Our aim was to use this Wi-Fi technology initially for relatively

short range communication. In Android this is achieved by something known as ‘socket’

communication. Socket is a class that interacts with the Wi-Fi Service of the Android

Layer which in-turn talks to the Wi-Fi adapter of the Linux Layer. This class basically

does all the talks and the only thing a user has to input is the address for the destination

device and the app of the device. Through socket class we can retrieve the data received

in the Wi-Fi adapter and at the same put our data in the buffer for the Wi-Fi adapter

to modulate it and stream it out. The functions are .inputstream() and .outputstream()

respectively 2.21.

Chapter 2. Design 28

Figure 2.21: Socket Communication in JAVA

Chapter 2. Design 29

2.9 Sources Explained

2.9.1 Client

The Coordinates.java class was made to store the LatLng retrieved after parsing the

json and have few functions to optimize the uploading task to server simple and easy.

1 /*

2 It holds the lat and lng of a particular coordinate...

3 */

4 public Coordinates(double lat, double lng, int i) {

5 this.latitude = lat;

6 this.longitude = lng;

7 this.id = i+1;

8 }

9

10 /*

11 setter and getter...

12 */

13 public double getLatitude() {

14 return latitude;

15 }

16 public void setLatitude(double latitude) {

17 this.latitude = latitude;

18 }

19

20 /*

21 and finally a future plan to have the upload to server functionality

22 */

23 public void upload(){}

The MainActivity.java in client will allow users to use GoogleMap to navigate to the

current location of the user and select way-points around that location by tapping on

the screen. With every tap; the activity will render a marker on the map and also store

the Lng-Lat in two separate json array. If not happy with the waypoints; the user may

opt to remove the previous choice by clicking the remove which will do two action:

• remove the markers from the google map.

• reset the json arrays for the new selection.

Another thing to notice is the polyline between the waypoints. The polyline requires

two coordinates as parameter to render the polyline; however since in our case we wished

Chapter 2. Design 30

to build a polyline between the previous coordinate and the current coordinate I had to

a little brainstorm to come up with the following algorithm:

1. every tap on the map will increment a counter;

count++;

2. the previous coordinate is obtained by typing ; jsonAr[counter - 1] while the current

coordinate is jsonAr[counter]

1 /*

2 */

3 client = new Client(mainAcitivity, portInt, ip);

4 client.start();

2.9.2 Server

Location class is a service that connects to Location Services in Google Play Services

using LocationClient and receives the coordinates from the LocationListener interface

whose refresh rate can be configured in the beginning

First we initiate LocationRequest and LocationClient in the onCreate() method of

our service. Now that things are initialized, we wait for the LocationClient to get

connected to the Location Services and then we do two important things; connect the

LocationClient in the onStartCommand() and start the update on onConnected().The

values are sent to the MainActivity through Message by a Messenger and MainActivity

receives it using Handler.

Chapter 2. Design 31

1 /*

2 inside void onCreate() set the:

3 - update intervals and

4 - data precision

5 */

6 mLocationRequest = LocationRequest.create();

7 mLocationRequest.setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY);

8 mLocationRequest.setInterval(UPDATE_INTERVAL);

9 mLocationRequest.setFastestInterval(FASTEST_INTERVAL);

10

11 /*

12 inside void onCreate() initiate location client by feeding it:

13 -ConnectionCallbacks and,

14 -onConnectionFailedListeners

15 */

16 mLocationClient = new LocationClient(this, this, this);

17

18 /*

19 inside void onStartCommand()

20 connect the location client to location service...

21 */

22 mLocationClient.connect();

23

24 /*

25 Access the location coordinates from the location service through

26 onLocationChanged(Location location) interface...

27 Take the location and convert them to string

28 Send them to MainActivity

29 */

30 String locString = "Latitude :" + location.getLatitude()

31 + "Longitude :" + location.getLongitude();

32 sendMessage(locString);

The smart-phone to usb device communication in our USB class is achieved by a

library developed and regularly maintained by Mike Wakerly [?].

His library contains the following important classes among a list of classes in the driver

package:

1. UsbSerialDriver.java

Chapter 2. Design 32

2. UsbSerialProber.java

3. FtdiSerialDriver.java

He also provided an input listener in his util package called SerialInputOutputMan-

ager.java which we used for listening to incoming data to the USB and accessed it

through an instance of SerialInputOutpuManager.listener. These classes were used

in making the USB class which is a worker thread in our app. In the run() method

I wait for the USB to connect and once it connects I take its driver and configure its

reading listener and writing parameter. The void write(char[] msg) is designed for

any app component to use it to send data to the ftdi using this function. Initially the

UsbManager of the android layer is requested to keep an eye to detect any peripheral

device on the usb port.Once the driver is found, we configure the writing parameter and

input listeners.

Chapter 2. Design 33

1 /*

2 Android UsbManager is initialized that keeps

3 an eye on any usb connection...

4 */

5 UsbManager usbManager = (UsbManager) activity.getApplicationContext()

6 .getSystemService(Context.USB_SERVICE);

7

8 /*

9 The usb manager will constantly look for a device

10 and extract the driver using UsbSerialProber...

11 */

12 while (usbSerialDriver == null) {

13 usbSerialDriver = UsbSerialProber.findFirstDevice(usbManager);

14 }

15

16 /*

17 The driver is opened for communication...

18 */

19 usbSerialDriver.open();

20

21 /*

22 configure output parameter...

23 */

24 usbSerialDriver.setParameters(1200, 8,

25 UsbSerialDriver.STOPBITS_1,

26 UsbSerialDriver.PARITY_NONE);

27

28 /*

29 and the input listeners...

30 */

31 mSerialIoManager = new SerialInputOutputManager(

32 usbSerialDriver, mListener);

JSON [?]; short for JavaScript Object Notation ; is a data-interchange format that

can be used to send-receive values between devices whose strength lies at the ease of

parsing.

Hence our Parse.java class is worker thread that receives the coordinates sent from

the user in JSON format and parse it using JSON class for navigation purpose and also

displaying them in the activity.

Chapter 2. Design 34

1 // wait at port 4040 for any request from the user...

2 serverSocket = new ServerSocket(4040);

3 client = serverSocket.accept();

4

5 //parse once a data is received in that port....

6 if (msg != null)

7 parse();

8

9 //parse it inside the void parse() function...

10 JSONObject jsonObject = new JSONObject(msg);

11 JSONArray lngJsonArr = jsonObject.getJSONArray("lat");

12 JSONArray latJsonArr = jsonObject.getJSONArray("lng");

The ServerUDP.java class will receive the DatagramPacket containing the

mode value and the control values: Aileron, Elevation, Thrust, Pitch. We are using

udp DatagramSocket which is much faster than the standard tcp Socket. The

fundamental difference between udp and tcp is that once the connections gets lost

in udp there is no need to re-establish the connection since there is no concept of

connection in udp. A DatagramSocket simply sprays around packets in the network and

the packets itself finds its way to the destination according to the destination address

included in every single packet in the case of a client. While in the case of a udb server

its even more easier, we tell the capacity of a packet and then mention the port of the

socket before initiating it.

Chapter 2. Design 35

1 //create an array of byte to hold our data...

2 byte[] msgAr = new byte[MAX_UDP_DATAGRAM_LEN];

3

4 // put this array inside our packet...

5 DatagramPacket dp = new DatagramPacket(msgAr, msgAr.length);

6

7 //initialize a datagram server socket

8 DatagramSocket ds = new DatagramSocket(port);

9

10 // receive any data and put inside this packet...

11 ds.receive(dp);

12

13 //send it to the Atmega328p in our pcb...

14 if (dp != null)

15 usb.send(msgAr);

MainActivity.java is the process that is dedicated to the users interaction. It seeks the

required data from the other app components and also sends the data to them by using

Messenger-Handler. Hence we find the layout views by querying the resource id and feed

them to the view instances in the MainActivity. Then the important app components

; threads and services are initiated that will carry out the main task of acting as the

receiver module for the quadcopter.

Chapter 2. Design 36

1 /*

2 TextView , Button and ImageButton are declared...

3 */

4

TextView ip_value,global_ip_value, connection_value, rudder_value,

mode_value, aileron_value, elevation_value, thrust_value,

replay_value, json_value;

→

→

→

5 Button start_cameraStrea;

6 ImageButton serviceStart;

7

8 /*

9 These view are attached with instances in the following way;

10 */

11 elevation_value = (TextView) findViewById(R.id.elevation_value);

12 serviceStart = (ImageButton) findViewById(R.id.startService);

13 start_cameraStream = (Button) findViewById(R.id.startStream);

14

15 /*

16 Right after initializing these layout components

17 threads and services are started.

18 Location service called up using intent

19 */

20 Intent intent = new Intent(activity, Location.class);

21 startService(intent);

Chapter 2. Design 37

1 /*

2 The streaming activity inside the third party app IPCam app

3 is called up using intent...

4 */

5 Intent intent_stream = new Intent().setClassName(

6 "com.pas.webcam", "com.pas.webcam.Rolling");

7 startActivity(intent_stream);

8

9 /*

10

The ServerUDP is first initialized and then its run function is

triggered...

→

→

11 */

12 ServerUDP serverUdp = new ServerUDP(3030);

13 serverUdp.start();

14

15 /*

16

Finally a separate port is used for the incoming way-points in json to

be parsed

→

→

17 */

18 Parse parse = new Parse(4040);

19 parse.start();

2.10 3D Model Design

A 3D Model of the quadcopter was custom designed to fit our needs. The 3D Model

was supposed to have arms of specific lengths to allow the propellers to rotate freely. We

designed the whole quadcopter in Google Sketch Up taking care of these parameters.

The design also was supposed to have a holder for the mobile phone. We designed

a intelligent mechanism for controlling the tilt angle of the mobile. We used 10 inch

diameter propellers with 3.8 inch of pitch. The pitch controls the amount of air scoped

with each rotation. The diameter controls two things, amount of air the propeller pushes

down, and the weight of the propeller. Careful calculations and testings were done to

calculate the amount of weight of each motor can lift.

Features of the Model:

• Four less infill light 10” motor arms.

• Three center platforms with screw holes to mount the control chip.

• A raft to hold and rotate the mounted android smart-phone.

• Four stands for landing gear.

Chapter 2. Design 38

Figure 2.22: A arm of the quadcopter is being printed by the MakerBot.

2.11 Gyroscope Sensor

A quadcopter is highly prone to instability due to irregular distribution of mass or

wind.Basic moves of a quadcopter like lifting straight off the ground to complex moves

like pitch(right) and roll or yaw cannot be achieved without stabilizing the quadcopter.

Figure 2.23: Explanation of the traditional 3 Dimensional rotation movements. These
movements were defined for airplanes but as time passed by, these same terminolo-
gies were adopter by quad-copters although quadcopters don’t bend their wings for

roll(aileron).

It has become the industry standard to implement sensors to know the precise mea-

surment of imbalance instantly and exert the proper combination of force to bring it

Chapter 2. Design 39

back to balance. These sensors are known as Gyroscope and they use the law of physics

to measure this phenomenon.

Figure 2.24: The gyroscope sensor is designed to measure the rotation per second
and the angle of rotation of the object its mounted to when it experiences an imbal-

ance.Below is a typical 3-axis gyroscope ITG3200. [6]

Hence, when the object tilts a little to the right(roll), the gyroscope on the y-axis will

record a reading while the other three will not record any reading, or when the device

tilts up(pitch) the sensor in x-axis will record a value while the rest wont record any

value and finally if the device rotate in the horizontal plane the sensor in z plane will

measure a current due to angular rotation around the z-axis

The working of the gyroscope is as fascinating as it is clever. There is a small mass

inside each gyroscope on a particular axis which is held by very small springs. When

there is a rotation, this will cause a centripetal force to form whose direction will depend

on the direction of rotation. For instance; if the gyroscope is rotating right there will

be a force that is exerted toward the center while it the gyroscope is rotating outward

there will be a force that opposite to the center.

Figure 2.25: These forces are exerts the spring and this movement generates very
low-current electrical signal that is amplified and later read by the micro-controller. [6]

Chapter 2. Design 40

2.12 An unexpected tragedy

After designing the whole body using the lab’s 3D printer, the quadcopter’s body

melted and twisted away one day due to sun heat. This gave us a strong lesson that the

plastic used to manufacture the quadcopter body is very sensitive to the high tempera-

tures. Since UAE’s temperature is usually very high in major part of the year, the 3D

plastic cannot be used for building the quadcopter.

2.12.1 Temperature Sensitivity of PLA plastic used in 3D printer

The plastic which is used in the 3D printer is Polylactic Acid thermoplastic aliphatic

polyester. It is usually derived from renewable resources such as corn starch. It has a

melting point of 150-160 degrees centigrade. The temperature in UAE reaches 45 degree

centigrade in summers and even with a small amount of insulation, this temperature can

reach high enough to just twist or deform the plastic. The choice of PLA plastic for

quadcopter body is really bad when it comes to temperature sensitivity.

2.12.2 Strength of PLA plastic

In the first two-three attempts, the quadcopter crashed several times and broke the

arms within milliseconds after coming in contact with the ground. This was also a big

issue as we want the final product to have strength enough to withstand huge jerks and

shocks in case the quadcopter falls down from huge height.

Figure 2.26: The table shows strength of the plastic used for 3D printing in our lab
according to different standards. [3]

Chapter 2. Design 41

2.13 New Body Design

Figure 2.27: Turningy Talon Carbon Fiber Quadcopter Frame

Figure 2.28: Motor Brackets Holder

Chapter 2. Design 42

After getting the lesson, we changed the body from PLA 3D printed plastic to Carbon

Fiber body. The body was bought as a kit from HobbyKing named ” Turnigy Talon

Carbon Fiber Quadcopter Frame”. Link: http://hobbyking.com/hobbyking/store/

__22397__Turnigy_Talon_Carbon_Fiber_Quadcopter_Frame.html

2.14 Circuit Design

2.14.1 Circuit Design Version 1

Initially when we started our research on Quadcopter controller board, we found that we

needed a PCB to find out what signals exactly are required by the quadcopter in order

for it work perfectly. Additionally, connecting and disconnecting all the wires on the

breadboard was very hectic and time consuming. For this purpose we created the version

1 of the PCB. It was the pre-final version of the PCB. This PCB’s job is to transmit

the appropriate Aileron, Rudder, Thrust and Elevation PWM signals to the controller

board so that it can further perform PID control on brush-less motors. Essentially, this

PCB is a bridge between the controller board and the smartphone. The following were

the features of the first circuit.

• Servo connectors for four ESCs.

• Servo connector for mini servo which will be used for changing the mobile angle.

• Reset push button.

• Tilt Compensated Compass output pins.

• SPI programming header.

• 16 MHz crystal with 22pF capacitors for providing clock signal to AtMega328.

• Ultrasonic height sensor connection.

• FTDI connection pin.

• 3.3V Regulator for stepping down he voltage from 5V to 3.3V for the XBee.

• 3 indicator LEDs of different colors.

• XBee connection support.

• Bluetooth module connection support using the FTDI pins.

http://hobbyking.com/hobbyking/store/__22397__Turnigy_Talon_Carbon_Fiber_Quadcopter_Frame.html
http://hobbyking.com/hobbyking/store/__22397__Turnigy_Talon_Carbon_Fiber_Quadcopter_Frame.html

Chapter 2. Design 43

Figure 2.29: A circuit diagram of our prototype board design version 1.

2.14.2 Circuit Design Version 2

We quickly realized that several improvements can be done to the initial circuit to make

the quadcopter have more and more features. The following are the additional features

of the new PCB.

• IR Receiver for receiving Infra red signals. Basically this includes TV, CD player

and other IR transmitters. The IR receiver already has a electronic circuit to

amplify the IR signal and provide a signal when a change in IR level is detected.

Also the Sensor already has the background noise removal circuit. SO we can

just connect the infra-red sensor directly to the interrupt pin to read the bits

transmitted and change the states of the quadcopter. This IR Receiver will be

used.

• 5V Barrel Jack connector for providing 5V to the circuit.

• USB A jack for supplying power.

• USB B jack for supplying power.

Chapter 2. Design 44

Figure 2.30: A circuit diagram of our prototype board design version 2.

2.15 PCB Design

The PCB was designed to be compact and at the same time to contain all the essential

components for communication. There are two ways a communication link can be made

with the on-board ATmega 328 on our PCB. The first method is by using XBee and the

second method is by using the USB Port.

Features of the Prototype PCB

• 4 servo connectors for connecting to the Electronic Speed Controllers.

• 8 Pin connector for connecting a tilt compensated compass.

• 6 pin connector for FTDI chip to convert USB data signals to serial data.

• 4 pin connector for connecting a height measurement sensor.

• A 3 pin connector to connect the mobile tilting sensor.

• A SPI JTAG programming header.

• XBee connector for wireless communication.

• 3 LEDs to indicate the status of the AtMega microcontroller.

In the above figure, the prototype board is shown where we have used XBee to

communicate with the computer and receive the serial data to control the motor speed.

This is just for testing purposes and in the final design we will use the data coming from

the android to determine the speed of the motors. Furthermore, the final design will use

the XBee as a kill switch to completely turned off the quadcopter in case it reaches a

forbidden area or any similar situation.

Chapter 2. Design 45

Figure 2.31: A x-ray vision of our prototype board design version 1.

Figure 2.32: A x-ray vision of our prototype board design version 2.

Chapter 2. Design 46

Figure 2.33: A x-ray vision of our prototype board design version 3.

Chapter 2. Design 47

Figure 2.34: A x-ray vision of our final board design version 4.

2.16 Safety Design

Safety is the most important aspect when it comes to our project and our aim was

not only to stop the expensive propellers form breaking down but also from hurting

those standing nearby.To keep the propellers from hurting anyone a prop(eller)g-guard

is often used. Some convincing designs by hobbyists that inspired our design were one

made from Styrofoam and other PVC.

Chapter 2. Design 48

Figure 2.35: Prop-guard Design on White Board

Figure 2.36: Prop-guard Built with Notepaper

The design went through a couple of phases;2.35, 2.36 which finally ended in a detailed

auto-cad design 2.37 . Using Styrofoam lying around as waste the final prop guard was

built which is yet to be tested. 2.39

Chapter 2. Design 49

TOP VIEW

ISOMETRIC

FRONT
VIEW

R16.0

14.5

5.0
32.0

5.5

15.0
5.5

32.0

5.0

R7.5

Figure 2.37: Prop-guard CAD Design

Chapter 2. Design 50

Figure 2.38: Prop-guard Cutting

Figure 2.39: Prop-guard Built with Styrofoam

Chapter 2. Design 51

2.16.1 Emergency Button

Figure 2.40: Emergency Button Concept

The quad-copter had a big chance of going out of control and that’s when the idea of an

Emergency Button was badly felt. Sullivan [1] wrote an easy to understand tutorial;

Using an IR remote to Control an Arduino Project. He uses a IR receiver module and

sets it up in an Arduino environment. Then he uses a IR Remote library from Github

to receive data and display in the serial monitor of Arduino. Find this detailed tutorial

in the pdf document Using an IR Remote to Control an Arduino Project.

We are using TVs in our daily life and we know how easy changing the chan-

nels through a remote control is, compared to changing the channels through buttons

mounted on the actual device itself. The beauty of IR-remote is that it informs the

device which button the user has pressed. This is done through the process of coding

each button value and sending it through the IR LED and turning it ON or OFF in

a particular manner. We cannot see the IR light as it falls well below the visible light

frequency, hence the name ”infra” red. However, we can see the IR light of our home

TV remotes through a digital camera.

Modulating and demodulating the IR LED digitally is much more simpler and ac-

curate than modulating and decoding it in analogue method. Analogous method of

controlling can lead to errors when decoding as the brightness of IR LED is inversely

proportional to the distance of the transmitter and receiver.

Chapter 2. Design 52

Figure 2.41: Peter Jakab on his website gives a schematics of electronic circuit to
receive and transmit infrared pulses using IR LED and IR detector.[12] The circuit
uses a 555 Timer Multivibrator IC tuned to generate timed pulses with the help of

capacitor and resistor frequency selective network.

Many coding schemes have been evolving through years of research and experimenta-

tion by several companies. The manufacturer can opt for any coding scheme according

to their design because as of yet, there is no standard set for the IR remote. Coding

scheme depends on the micro-processor’s optimum operating frequency and the number

of buttons/functions on the remote. More number of functions in a IR remote leads to

a longer message signal. One of the coding scheme for IR remote is RC-5 which was

developed by Philips in December 1992 and is shown below in the figure.

Chapter 2. Design 53

Figure 2.42: RC-5 Philips Protocol [7] uses pulse position modulation to send either
a 1 or a 0 to the receiver. If the pulse is in the first half of 1778 micro-second then
a 0 is received and if the LED is ON for the second 889 micro-seconds, then a 1 is
received. The whole information packet consists of 14 bits and the starting three bits
are meta-data bits and five bits after meta-data bits are to selects one of 25 = 32 possible
systems. The bits after that are to select one of the 26 = 64 commands. Therefore,
RC-5 protocol is limited to have 64 commands and 114 millisecond command transfer

rate.

Chapter 2. Design 54

Following the tutorial discussed in the research we obtained a receiver module 2.44

and implemented the Arduino IR library. Any button pressed in the tv remote 2.43 will

be received by the receiver that will cause an interrupt. The interrupt will invoke an

emergency function which will force all the values be reset to zero. With another press

it will restart the system.

2.16.2 Control Box

There are sensitive elements like the controller board, pcb and the mobile phone which

needs to protected in the worst case scenario. That’s where we thought of a way these

could be protected in those situation 2.45. To make the emergency button more reliable

a different model was thought out. In this concept we wanted the emergency remote to

respond from every direction and that was when this concept came up ??.

Figure 2.43: Remote for Emergency Power

Figure 2.44: IR Receiver Module

Chapter 2. Design 55

Figure 2.45: Designing the Box for Controller Board, PCB

Chapter 2. Design 56

Figure 2.46: Improved design for the Box

Finally, the best option for this protective box was a lunch box with heavy customization

2.48, 2.47 .

Chapter 2. Design 57

Figure 2.47: Protective Box Built

Figure 2.48: Protective Box Close Usp

2.16.3 The Wooden Frame

2.16.3.1 Introduction

The most important aspect of a project does not depend on how good the object

works. It is about the safety of the project itself. The Quad Copter project required a

Chapter 2. Design 58

lot of testing needed to be done in it to make sure it is safe for the public.

The Quad Copter project that we undertook is one of the most of the dangerous

projects ever undertaken in the history of Abu Dhabi University. The casualties that

happened during the course of the trial period included a broken finger and numerous

shaken hearts. This prompted the team members to come up with a method to make

sure the Quad Copter could be tested safely. Thus came the idea of the “Wooden

Frame”.

2.16.3.2 Use

The “Wooden Frame” is designed with the intention of keeping the quad copter under

control: in other words, to make sure the Quad Copter does not fly out of control and

harm the testers. The introduction of the wooden frame gave the testers the peace of

mind to try out all the features of the Quad Copter.

2.16.3.3 Materials Used

• Wood Sticks (1.6 meter in length).

• L Shaped Metal Brackets.

• Wood Screws.

• Long Thin Aluminum Tube (Handle of a broom/ mop).

• Nylon Strings.

Chapter 2. Design 59

2.16.3.4 Structure

Figure 2.49: Frame Design

The Wooden Frame is made up of various wooden sticks cut to a length of 1.6 meters.

The wooden sticks are connected with each other to form two rectangular shapes.

The Wooden sticks are attached perpendicular to each other with the help of L

Shaped Metal Brackets and wood screws. Additional wooden pieces were hammered

with nails on the junctions to improve the strength of the joints.

The two rectangular shapes are then connected with each other keeping a slight gap

in between the rectangular frames. The gap allows a light Aluminum tube to move up

and down the rectangular figure. This ensures ONLY vertical motion.

Strings from the four ends of the Rectangular frame are connected to the wall of the

room in which the Quad Copter was tested. The strings ensured the Wooden Frame

was stable and did not fall down.

The quad copter is mounted on the Aluminum tube with strong polyester strings.

The Quad Copter is free to rotate along the axis of the Aluminum tube. Small wood

pieces are attached at the end of the tube to avoid it from coming out of the gap.

Chapter 2. Design 60

2.16.3.5 Problems Faced

The biggest problem we faced due to the use of the wooden frame is the difficulty of

the quad copter flying. The use of the aluminum tube means the Quad Copter has to

fly an extra amount of weight – which it found was quite difficult.

Chapter 3

Implementation

3.1 Balancing the Quad-copter

Although the controller board is programmed with the task of keeping the quad-copter

balanced after tuning the gyros the quad-copter was still unable to balance itself. There

after we had to put the copter inside a wooden frame to start finding the value for

balancing 3.11, ??, 3.13, ??. We discovered that it balances at the following values:

1 Aileron.write(93);

2 Elevation.write(93);

3 Thrust.write(57);

4 Rudder.write(93);

3.2 Custom Circuit Board

The job of the circuit board is to process the packets coming from the socket or FTDI

chip and produce appropriate PWM signals for the controller board. The 7 byte packets

coming from the socket or FTDI chips are first checked for validity by comparing the

first and last byte. Then the state byte is processed and the quadcopter is put in the

required state.

3.3 Setting up Quadcopter for flight

It is of utmost importance that the components of the quadcopter be turned ON and

checked in proper order otherwise the motors can receive garbage values and respond in

an unexpected way.

1. Make sure the Smart-phone is connected to the same network as ground station

or in case of 4G, internet is connected.

61

Chapter 3. Implementation 62

2. Connect the Smart-phone to the FTDI Chip using the USB (male - male) connec-

tor.

3. Once the ESCs are programmed (Beeps are finished and red LED is ON in con-

troller board), start up the ground base application.

4. Enter the IP Address and port number in the ground application after checking

from the Smart-phone interface.

5. Click Connect button and check the status on Smart-phone. It should say ”Con-

nected” in Connection Status.

6. Make sure the quadcopter is in emergency mode by checking the Mode in Smart-

phone.

7. Take the hand as far as possible from the Leap motion sensor.

8. Press on Guesture Control button.

9. Slowly bring the hand near the sensor and enjoy flying with hands.

3.4 Final Product

The final product includes the following components:-

1. Carbon Fibre Body Quadcopter.

2. Leap Motion Device.

3. Leap Motion USB Cable.

4. Orego X Desktop Application.

5. Orego X Callibration Application.

6. Android Server Application.

7. USB mini to micro (male-male) Cable.

8. Custom built Decoding PCB.

9. HobbyKing Controller Board.

10. 5V FTDI USB-Serial converter chip.

Chapter 3. Implementation 63

3.5 PCB

The printed circuit board consist of an Atmega328P that sends out four pwm values to

the controller board using and communicates with peripheral devices through tx and rx

connected to an FTDI outlet.It is also built with the capability of sonar and ir sensor

for height sensing and emergency button respectively. ??, 3.3

3.6 Frame

The frame served two important purpose; safety and debugging. Due to the dramatic

nature of esc it was very scary to come close for checking simple things like whether

all the motors are responding or what was the direction of the air flow. Once it was

strapped inside the frame the fear was much less and debugging process easily made

progress. ??, 3.18, ??, 3.20, ??, 3.22, ??, 3.24, ??.

3.7 Module Requirement and Performance

The different modules that are on play are the following:

• Transmitter

• Receiver

• Control Board

• ESC

• Motor

3.7.1 Transmitter

3.7.1.1 C Sharp Ground Application

After designing the interface for the application, we tested the flight and control

using the C Sharp application. There were several problems in the sensitivity of the

hand gestures. We fixed these problems by remapping and tuning the values sensed by

the leap sensor.

3.7.1.2 Remapping the Pitch

The problem with the pitch was that it had to be remapped from

range -90 to +90 to range 87 to 97. 87 to 97 range was selected be-

cause 93 was the middle value found out by experimentation and even

a small change from this value causes the quadcopter to tilt a lot.

Chapter 3. Implementation 64

1 /*

2 the remapping done for Pitch...

3 */

4 Elevation = (int)pitchVal+93;

5 Elevation = (int)(((double)Elevation / 180) * 10) + 87;

The remapping equation becomes:

Premapped =

(
Praw + 93

180
× 10

)
+ 87 (3.1)

The minimum value the formula will produce is:

Pmin = 87 (3.2)

The maximum value the formula will produce is:

Pmax = 97 (3.3)

3.7.1.3 Remapping the Roll

There were two problems with roll, the first one was that it had to be remapped from

range -90 to +90 to range 87 to 97. The second problem was that the range needed to

be reversed. In essence, the left tilt of the hand should produce higher than 93 value and

right tilt of the hand should produce lower than 93 values and not the other way around.

1 /*

2 the remapping done for Roll...

3 */

4 Aileron = (int)rollVal + 93;

5 Aileron = (int)(97 - (((double)Aileron / 180) * 10));

The remapping equation becomes:

Rremapped = 97−

(
Rraw + 93

180
× 10

)
(3.4)

The minimum value the formula will produce is:

Rmin = 87 (3.5)

Chapter 3. Implementation 65

The maximum value the formula will produce is:

Rmax = 97 (3.6)

3.7.1.4 Remapping the Thrust

Leap motion device detects hand up to 700 cm vertical distance away from the sensor.

As the hand goes away from the sensor, the accuracy of the finger positions and other

parameters goes down. Since, higher accuracy is needed at high speeds and at lower

speeds accuracy can be compromised, the control for thrust was reversed. Although leap

sensor is capable of sensing distances up to 700cm, a margin of 200cm was kept and the

acceptable range was made from 0-500.

Moving the hand away from the sensor makes the thrust low and

moving the hands closer to the sensor increases the thrust. There-

fore there are two requirements the mathematical formula should suffice.

1 /*

2 the remapping done for Thrust...

3 */

4 Thrust = (int) ((((500.0 - hand.PalmPosition.y) / 500.0) * 100.0)

5 + 50.0);

1. Re-map the input from the leap sensor from range 0-700 to range 50-150.

2. Reverse the range (700 maps to 50 and 0 maps to 150).

The final equation becomes:

Tremapped =

(
500− Traw

500
× 100

)
+ 50 (3.7)

The minimum value the formula will produce is:

Tmin = 50 (3.8)

The maximum value the formula will produce is:

Tmax = 150 (3.9)

3.7.1.5 Emergency

During the course of flight testing we had to find reassurance in the emergency button,

as discussed in design we implemented an IR sensor that when sensed will trigger an

Chapter 3. Implementation 66

interrupt. In this case 3.7 , ?? we are trying to turn off the quad copter when there is

any hint of it going out of control.

3.7.2 Control Board

To stabilize the quadcopter, a HobbyKing controller board was tuned and used to

control the motor speeds at all time. HobbyKing Multi-Rotor Control Board V3.0

(Atmega328 PA) uses three Murata Piezo gyroscopes to measure acceleration or change

in angle in three directions, pitch, roll and yaw.

The output signal from the gyroscopes is multiplied by the potentiometers or ”pots”

to reduce or increase the sensitivity of the signal. The controller board contains a simple

voltage divider circuit to divide the voltage in the range 0-5V. This voltage is then send

to the on-board AtMega micro-controller’s ADC (Analogue to Digital Converter) pin.

It was necessary to tune these three gyroscopes for a stable flight. Several boom tests

were done to ensure that the quadcopter balances correctly.

3.7.2.1 Balancing the Quad-copter

Although the controller board is programmed with the task of keeping the quad-copter

balanced after tuning the gyros the quad-copter was still unable to balance itself. There

after we had to put the copter inside a wooden frame to start finding the value for

balancing 3.11, ??, 3.13, ??. We discovered that it balances at the following values:

1 Aileron.write(93);

2 Elevation.write(93);

3 Thrust.write(57);

4 Rudder.write(93);

3.7.2.2 Tuning Elevation

This was an important step in balancing the quadcopter as it determines the front

and back motion of the quadcopter in air. The front and back motors should respond

to different values sent and should tilt the quadcopter in forward direction if higher or

tilt backwards if lower than the medium value.

Step 1: Tie the quadcopter from the right and left motor sides.

Step 2: Establish either USB (Serial) or socket communication using the Orego-X Cali-

bration Application.

Step 3: As the thrust of 58 just starts the motors, and it can go up to 140 value, slowly

increase the thrust up to about 90 value.

Chapter 3. Implementation 67

Step 4: Now change the value of elevation in the numeric up-down box and study the

effect.

Step 5: Tune the value until the quadcopter balances out and both brushless motors are

at the same speed.

3.7.3 Tuning Aileron

Tuning the aileron determines how the quadcopter moves left and right in the air.

The left and right motors should respond to different values sent and should tilt the

quadcopter in right direction if higher or tilt left if lower than the medium value.

Step 1: Tie the quadcopter from the front and back motor sides.

Step 2: Establish either USB (Serial) or socket communication using the Orego-X Cali-

bration Application.

Step 3: As the thrust of 58 just starts the motors, and it can go up to 140 value, slowly

increase the thrust up to about 90 value.

Step 4: Now change the value of aileron in the numeric up-down box and study the effect.

Step 5: Tune the value until the quadcopter balances out and both brushless motors are

at the same speed.

3.7.4 Tuning Rudder

Rudder determines the spinning motion of the whole quadcopter body in the z-axis.

This is also often known as azimuth angle. Correcting or balancing the rudder is quite

tricky as it is difficult to restrict all other motions of the quadcopter and allow only

azimuth rotation. This was done actual flight tests.

3.7.4.1 Blocking Rudder Change

Several tests and crashes from different drivers gave the feedback of difficulty in

control because of Azimuth angle of hand. The azimuth angle of hand determined the

rudder of the quadcopter.

The Quad-copter can be manouvred in all directions using only Pitch, Roll, and

Thrust so the rudder value sent from the ground application while in gesture control

mode is always in the middle (93). This heavily improved the hand gesture flight control.

Chapter 3. Implementation 68

3.7.5 ESC

The ESC takes the ppm values from the controller board and controls the current flow

between the LiPo battery and the brush-less motor accordingly. The ESC must be

equipped with the proper contacts to receive the ppm values otherwise it might not

arm. After making sure the soldering contacts are robust we made it safer using shrink

tubes and thereafter it performed perfectly.

3.7.5.1 Propeller

3.8 Air Flow

One important condition of the quad-copter to lift off the ground is that the air flow

generated by the propellers should be directed to the ground so that it may force itself

upward, however as common sense as it may sound it quite difficult to make sure that

the air flow is downward. A simple trick that we learn was to take off the propellers

and put some tape in its place ??, 3.15, ??. This way its both safe and one can put

finger in those tape to asses the direction of the the propeller. Later on we discovered

another technique to achieve this purpose. Put the propellers on but run the motor at

slow speed. Throw some paper on top of it and notice the direction of the path of the

paper. If it is pushed back then the air is pushed upward but if it is sucked in than the

air is pushing downward.

Chapter 3. Implementation 69

Figure 3.1: Quad-Copter Testing

Figure 3.2: ESC Armed Indication

Chapter 3. Implementation 70

Figure 3.3: PCB Acting as the Receiver

Figure 3.4: PCB with USB Plugged

Chapter 3. Implementation 71

Figure 3.5: Checking Motor Response

Figure 3.6: Test Flight in Home

Chapter 3. Implementation 72

Figure 3.7: Test Flight in Home

Figure 3.8: Emergency Button Test

Chapter 3. Implementation 73

Figure 3.9: Test Flight in Home

Figure 3.10: Emergency Button Test

Chapter 3. Implementation 74

Figure 3.11: Emergency Button Test

Figure 3.12: Balancing the Quadcopter

Chapter 3. Implementation 75

Figure 3.13: Quad-copter Balanced

Figure 3.14: Hand-Gesture Mode in Quad-copter

Chapter 3. Implementation 76

Figure 3.15: Hand-Gesture Mode in Quad-copter

Figure 3.16: Air Flow Test

Chapter 3. Implementation 77

Figure 3.17: Air Flow Test

Chapter 3. Implementation 78

Figure 3.18: Frame

Figure 3.19: Frame

Chapter 3. Implementation 79

Figure 3.20: Frame

Figure 3.21: Frame Corner

Chapter 3. Implementation 80

Figure 3.22: Frame Holding Screw

Figure 3.23: Balance Pipe Plug

Chapter 3. Implementation 81

Figure 3.24: Balance Pipe Holder

Figure 3.25: Balance Pipe

Chapter 3. Implementation 82

Figure 3.26: Balance Pipe

Chapter 4

Results & Discussion

4.1 Custom 3D Designed Body

Successful printing of the body was achieved but arms had to be manually drilled

for the holes so that the motors fit precisely. The body was assembled using the screws

with washers to prevent the plastic to breaking down. The hols for the circuit board to

mount were made and the place for the mobile angle mover servo was also cut out.

In the website from Makerbot named Thingiverse (www.thingiverse.com), there are

several 3D models designed for several sized quadcopters. Although these models are

similar to what our final product required, these models need to be modified in several

places to fit out needs and requirements.

4.1.1 Version 1 - PLA Plastic, Unchanged print

We printed the 3D quadcopter model as is from the thingiverse website without

modifying any part of the quadcopter. This was done in order to make sure that the

existing printer in the lab can print the model, all the parts fit together, and allow

additional electronic components to be mounted onto the central body.

We found that all the parts indeed fit together but a major increase in the height

of the arms from ground was needed. Also the motors we had did not fit on top of the

arms perfectly. An increase in the diameter of motor mounts was also needed.

4.1.2 Version 2 - PLA Plastic, Modified print

We increased the arm motor mount diameters and increased the height of the landing

pads and printed the parts using the 3D printer.

83

www.thingiverse.com

Chapter 5. Results & Discussion 84

We found that all the parts indeed fit together but a tragedy occured when we left the

model in the car for two days. Under the heat of the sun and no air flow, the quadcopter

body melted and got twisted.

4.1.3 Version 3 - Carbon Fiber Body

We bought the carbon fiber body from Hobby King and made sure that the dimensions

matched rest of the parts. The carbon fiber is composite material which is many times

stronger than steel and quite light in weight.

4.2 Leap Motion Library for Gesture Control

There is a huge documentation online for programming the leap motion controller

in Java. The gesture detection can be achieved using a Controller Object which can

return the hand tracking data by using frame object within this class. [5] For example

in the following code:

1 SampleListener listener = new SampleListener();

2 Controller controller = new Controller();

3 // Have the sample listener receive events from the controller

4 controller.addListener(listener);

5 Frame frame = controller.frame();

6 System.out.println("Frame id: " + frame.id()

7 + ", timestamp: " + frame.timestamp()

8 + ", hands: " + frame.hands().count()

9 + ", fingers: " + frame.fingers().count()

10 + ", tools: " + frame.tools().count());

4.3 Payload Capability calculation using MATLAB

A MATLAB code was written according to the propeller efficiency, power of the mo-

tors and the propeller size to calculate the payload the quadcopter is capable of carrying.

Chapter 5. Results & Discussion 85

1 % Propeller hover efficiency

2 eta = 0.75;

3 % Power of the motor Max. for our motor is 125

4 Power = 110;

5 % Propeller Radius in meters diameter = 10 inches = 0.2794

6 R = 0.2540;

7 % Usual Air Desnity kg/m^3

8 rho = 1.22;

9 Thrust = ((eta+Power)^2 * 2 * pi * R^2 * rho)^(1/3);

10 disp(’Thrust in Newtons:’);

11 Thrust

12 disp(’Weight Liftable by one motor in Kg:’);

13 Weight = Thrust/9.80665002864;

14 Weight

15 disp(’Weight Liftable by all four motors in Kg:’);

16 Weight = (Thrust/9.80665002864)*4;

17 Weight

The following was the result of the simulation:

Figure 4.1: Moving the hand away from the body can give us +ve value of movement
in y-axis.

4.4 Weight Calculation of the Quadcopter.

A weight load estimation excluding the extra payload was tabulated:

Chapter 5. Results & Discussion 86

Component Type Qty. Unit Total

ESC 30Amps 4 34.92g 139.7g

Motor & propellers Super Tigre 4 59.45g 237.8g

Plastic Frame 3D Custom 1 248g 248g

Screws Metallic 14 9.0g 125.0g

Servo Tiny 1 11.3g 11.3g

Control Brd. & wires Hobby King 1 21.0g 21.0g

AtMega Brd. Custom 1 29.9g 29.9g

Android Smartphone Huawei P6 1 120g 120g

11.V Battery ZOP 1 369.7g 369.7g

Ultrasonic Sensor N/A 1 10.2g 10.2g

Wiring N/A 1 20g 20g

Total 1332.6g

The weight calculation showed that the quadcopter parts were no heavier than

1332.6 grams. in order for a quadcopter to have nice thrust, typically the thrust

produced by the motors should be twice the weight. Our first test runs of the motors

show that the quadcopter is easily capable of lifting these weights.

4.5 Serial Communication Protocol Development Trials

There were several protocols developed in order to communicate with the mobile.

4.5.1 Trial 1

One of the first trial was to send a string containing all the flight data and apply

substring function to squeeze out the important flight variables. Some properties of the

packet were as follows:

1. The length of the string should be same at all times.

2. Each variable would be mapped from whatever its original range is to be from 100

to 206 so that the string length remains the same.

3. Each variable will be separated by a ’+’ character.

Application was a little tricky and required many trial and error corrections after

which the working code was as follows:

Chapter 5. Results & Discussion 87

1 void getMotorSpeeds(){

2 // Initializing the string to be null for tracking

3 String dataString = "0N0+0N0+0N0+0N0";

4

// data string format "Motor 1 Percentage + Motor 2 Percentage +

Motor 3 Percentage + Motor 4 Percentage"

→

→

5 dataString = getSerialString();

6 if(dataString == ""){

7 // Nothing was received

8 dataString = "000+000+000+000";

9 }

10 else{

11

// Check is valid string is received from the correct ’+’ character

placement

→

→

12

if(dataString.substring(3,4) == "+" && dataString.substring(7,8) ==

"+" && dataString.substring(11,12) == "+"){

→

→

13 // Print the 2nd raw value

14 Serial.print("data 2: "+dataString.substring(4,7)+"\n");

15 motorValues[2] = (((stringToNumber(dataString.substring(8,11))-100)/100.0)*76.0)+30;→

16 // Print the 3rd raw value

17 Serial.print("data 3: "+dataString.substring(8,11)+"\n");

18 motorValues[3] = (((stringToNumber(dataString.substring(12,15))-100)/100.0)*76.0)+30;→

19 Serial.print("\n");

20 // Set the PWM outputs

21 motor1.write(motorValues[0]);

22 motor2.write(motorValues[1]);

23 motor3.write(motorValues[2]);

24 motor4.write(motorValues[3]);

25 // Turn OFF the yellow LED

26 digitalWrite(yellowled, HIGH);

27 }

28 else{

29 Serial.print("Don’t Bullshit with me. -_-\n");

30 }

31

32 }

33 }

Disadvantages This protocol was working and for several weeks, it was used to

communicating with the controller board.

Chapter 5. Results & Discussion 88

1. The packet size is 15 bytes which is huge for high speed data transfer and is prone

to many bit errors while data transfer.

2. Mapping the original values from 0-180 (typical servo angle signals) to values rang-

ing from 100-206 (106 quantized levels) reduced the resolution of control variables.

3. String processing is often messy and takes a lot of time as we are calling function

substring() to split the string.

4. Once there is an error in a packet, the serial buffer goes out of sync and the

preceding packets will not be accepted.

5. Huge amount of serial printing back to the sender is not recommended and can

cause the ATMega to reset and the smart phone to restart if the data transfer rate

is high.

4.5.1.1 Packet Transfer Time

The serial transfer rate is about 1200 bps (bits per second). This was chosen after

many trials after finding out that the slowest speed works best.

The number of bytes in our string are 15. Since each byte contains 8 bits, the number

of bits in our string packet are:

bits/packet = 15× 8 = 120 bits (4.1)

Time required for transferring 112 bits

ttransfer =
120

1200
= 0.1 seconds = 100 milliseconds (4.2)

After incorporating processing time, this transfer time increases and this allows next

packet to come after 110 ms without aliasing or buffer fill up. The packet transfer rate

then becomes maximum at 9 packets/second. This is quite low.

4.5.2 Trial 2

One of the trials included sending a string containing the data and on the other side

decode it. In order to properly decode the string on the other side, the string should

follow certain rules.

1. The length of the string should be same at all times.

2. The first character in the string should be ’b’ to indicate the beginning of the

string.

Chapter 5. Results & Discussion 89

3. The last character in the string should be ’e’ to indicate the ending of the string.

4. Each variable would be mapped from whatever its original range is to be from 100

to 900 so that the string length remains the same.

Chapter 5. Results & Discussion 90

1 void getVariables(){

2 // Let me set up a protocol for communication

3 // This is a typical string sent from the mobile

4

// ’b’ symbolizes the begining of the string and ’e’ for ending of

the string

→

→

5 // The motor values go from 100 to 900, so 500 is the middle value.

6 // Order of Command Aileron -> Elevation -> Thrust -> Rudder

7 // example string "b400400400400e"

8 // Let me setup the initial Value

9 String dataString = "b555666777888e";

10

// data string format "Motor 1 Percentage + Motor 2 Percentage +

Motor 3 Percentage + Motor 4 Percentage"

→

→

11

12 if (dataString == ""){

13 // Do Nothing

14 }

15 else if(dataString == "stopstopstopst"){

16 // Emergency Mode, Stop Everything

17 Aileron.write(0);

18 Elevation.write(0);

19 Thrust.write(0);

20 Rudder.write(0);

21 Serial.print("I Stopped \n");

22 }

23 else{

24

// Check if it is a valid command beginning with b and ending with

e (Error Checking)

→

→

25

if(dataString.substring(0,1) == "b" && dataString.substring(13,14)

== "e"){

→

→

26 // Substring the data and indicate by Yellow LED

27 digitalWrite(yellowled, LOW);

28 RudderValue = (stringToNumber(dataString.substring(10,13)));

29 setValues(AileronValue,ElevationValue,ThrustValue,RudderValue);

30 digitalWrite(yellowled, HIGH);

31 }

32 else{

33 // Nothing was received

34 Serial.print("Something was wrong in the string received.\n");

35 Serial.println(dataString);

36 // Clear the Serial buffer

37 Serial.flush();

38 }

39 }

40 }

Chapter 5. Results & Discussion 91

Disadvantages Initially, the system was working flawlessly unless over time, we found

out some of the defects of the protocol.

1. The packet size is 14 bytes which is huge for high speed data transfer and is prone

to many bit errors while data transfer.

2. String processing is often messy and takes a lot of time as we are calling function

substring() to split the string.

3. Once there is an error in a packet, the serial buffer goes out of sync and the

preceding packets will not be accepted by the ’b’ and ’e’ criteria.

4. Serial flush function exists in Arduino serial library but does not do anything to

the buffer in our experience.

4.5.2.1 Helper Function - Converting String to Number

1 int stringToNumber(String thisString) {

2 int i, value, length;

3 length = thisString.length();

4 char blah[(length+1)];

5 for(i=0; i<length; i++) {

6 blah[i] = thisString.charAt(i);

7 }

8 blah[i]=0;

9 value = atoi(blah);

10 return value;

11 }

4.5.2.2 Packet Transfer Time

The serial transfer rate is about 1200 bps (bits per second). This was chosen after

many trials after finding out that the slowest speed works best.

The number of bytes in our string are 14. Since each byte contains 8 bits, the number

of bits in our string packet are:

bits/packet = 14× 8 = 112 bits (4.3)

Time required for transferring 112 bits

ttransfer =
112

1200
= 0.0933 seconds ≈ 93 milliseconds (4.4)

Chapter 5. Results & Discussion 92

After incorporating processing time, this transfer time increases and this allows next

packet to come after 100 ms without aliasing or buffer fill up. The packet transfer rate

then becomes maximum at 10 packets/second. This is quite low.

4.5.3 Trial 3 - Applied Method

A byte contains 8 bits and can be decoded into ASCII character or an unsigned

integer. 8 bits can store 28 = 256 different integers. The ESC signals range from 0-180

only. This allows a single byte to represent a speed. In other words, an ASCII character

can represent any number from 0 to 180.

Instead of sending long strings from the server which contains commands and values,

we can send a single byte for each of the values and a single byte to represent all of the

states. The quadcopter does not need more than 256 states, infact in this project there

are only 5 states. Emergency, Slow speed, Hand Guesture, Altitude Hold, and GPS

Waypoint. 5 characters can be used to represent each state.

1. The length of the packet should be same at all times.

2. The first and last bytes in the packet should be ′0b10101010′ for receiver, sender

synchronization purposes.

3. The second byte indicates the state of the quadcopter.

Figure 4.2: The figure explains the network protocol which was designed by us for
sending flight data from Android USB to micro-controller.

4.5.3.1 Packet Transfer Time

The serial transfer rate is about 1200 bps (bits per second). This was chosen after

many trials after finding out that the slowest speed works best.

Chapter 5. Results & Discussion 93

The number of bytes in our packet are 7. Since each byte contains 8 bits, the number

of bits in our string packet are:

bits/packet = 7× 8 = 56 bits (4.5)

Time required for transferring 112 bits

ttransfer =
56

1200
= 0.0467 seconds ≈ 47 milliseconds (4.6)

After incorporating processing time, this transfer time increases and this allows next

packet to come after 50 ms without aliasing or buffer fill up. The packet transfer rate

then becomes maximum at 20 packets/second. This is acceptable.

4.6 IR Emergency Button Trials

Since there was a essential need for using an Emergency button in order to stop

the quadcopter in case it is not responding. Taking the quadcopter to emergency mode

should be done in a separate communication channel so that emergency command is

uninterrupted or not lost in the communication link.

There were several options to implement the IR emergency button. After several

trials, tests, and experiments we arrived at the interrupt driven emergency button.

4.6.1 Trial 1 - Code Message Driven

Arduino has a library called IRremote.h which uses the timer of the ATMega to

detect IR signal pulses and returns a decoded result. The idea of using message coded

IR emergency button was to put quadcopter in emergency mode once a particular

message is received through IR.

Chapter 5. Results & Discussion 94

1 #include <IRremote.h>

2

3 int RECV_PIN = 11;

4

5 IRrecv irrecv(RECV_PIN);

6

7 decode_results results;

8

9 void setup()

10 {

11 Serial.begin(1200);

12 irrecv.enableIRIn(); // Start the receiver

13 }

14

15 void loop() {

16 if (irrecv.decode(&results)) {

17 Serial.println(results.value, HEX);

18 irrecv.resume(); // Receive the next value

19 }

20 }

After writing the code, we took a standard TV remote and started pressing buttons

on it to see what values are seen on the arduino terminal.

Chapter 5. Results & Discussion 95

Figure 4.3: The excel file with all the button results and the terminal screenshot.

We got the following results using a Toshiba CT-90380 IR remote:

Figure 4.4: The excel file with all major button IR signal results.

The problem: The IRremote library uses timer 0 by default for detecting IR pulses.

Timer 0 is already occupied by our code for giving the signals to the ESCs (PWM

generation).

Changing the timer from timer 0 to any other timer in ’IRremote.h’ file

Step 1: Accessing the header file for change of definition.

Chapter 5. Results & Discussion 96

Figure 4.5: After importing the IRremote library using the Arduino IDE, the library
is located in C : \Users\Muhammad\Documents\Arduino\libraries.

Step 2: Opening the header file for change of definition.

Figure 4.6: Open the ’IRremoteInt.h’.

Step 3: Changing the header file.

Chapter 5. Results & Discussion 97

1 #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)

2 //#define IR_USE_TIMER1 // tx = pin 11

3 #define IR_USE_TIMER2 // tx = pin 9

4 //#define IR_USE_TIMER3 // tx = pin 5

5 //#define IR_USE_TIMER4 // tx = pin 6

6 //#define IR_USE_TIMER5 // tx = pin 46

7

8 // Teensy 1.0

9 #elif defined(__AVR_AT90USB162__)

10 #define IR_USE_TIMER1 // tx = pin 17

11

12 // Teensy 2.0

13 #elif defined(__AVR_ATmega32U4__)

14 //#define IR_USE_TIMER1 // tx = pin 14

15 //#define IR_USE_TIMER3 // tx = pin 9

16 #define IR_USE_TIMER4_HS // tx = pin 10

17

18 // Teensy++ 1.0 & 2.0

19 #elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)

20 //#define IR_USE_TIMER1 // tx = pin 25

21 #define IR_USE_TIMER2 // tx = pin 1

22 //#define IR_USE_TIMER3 // tx = pin 16

23

24 // Sanguino

25 #elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)

26 //#define IR_USE_TIMER1 // tx = pin 13

27 #define IR_USE_TIMER2 // tx = pin 14

28

29 // Atmega8

30 #elif defined(__AVR_ATmega8P__) || defined(__AVR_ATmega8__)

31 #define IR_USE_TIMER1 // tx = pin 9

32

33 // Arduino Duemilanove, Diecimila, LilyPad, Mini, Fio, etc

34 #else

35 // Change here, uncomment the IR_USE_TIMER2

36 #define IR_USE_TIMER0 // tx = pin 9

37 //#define IR_USE_TIMER2 // tx = pin 3

38 #endif

Chapter 5. Results & Discussion 98

4.6.2 Trial 2 - Interrupt Driven

This is kind of a hack to detect the IR signal. The IR receiver has three pins, one

ground, one VCC, and one signal. The IR receiver already has an electronic circuit to

amplify the IR changes sensed in the environment. If the signal wire of the IR receiver

is connected to the interrupt pin of the ATMega, every time there is the change of IR

signal determined in the environment, an interrupt will be raised.
1 int pin = 13;

2 volatile int state = LOW;

3

4 void setup()

5 {

6 pinMode(pin, OUTPUT);

7

// Attach interrupt 1 and call blink() function whenever interrupt is

raised.

→

→

8 attachInterrupt(1, blink, CHANGE);

9 }

10

11 void loop()

12 {

13 digitalWrite(pin, state);

14 }

15

16 void blink()

17 {

18 state = !state;

19

// Delay for ensuring that the multiple interrupts are not raised

from single press of remote button.

→

→

20 delay(800);

21 }

4.6.3 KK Control Board Malfunction

The controller board was bought solely for the reason of stabilizing. The kk controller

board promised of stabilizing by detecting any changes in height and orientation relative

to the desired value using the gyros and compensating the change through the on board

PID algorithm. Although the gyros are detecting the changes the PID value are not

optimally set to compensate and from the behavior an educated guess can be made that

the P value is very small and D value is very dominating. The solution is to buy a

controller board whose PID value can be accessed from outside and changed to meet the

requirements.

Chapter 5. Results & Discussion 99

Several tests and crashes from different drivers gave the feedback of difficulty in

control because of Azimuth angle of hand. The azimuth angle of hand determined the

rudder of the quadcopter.

The quadcopter can be manoeuvred in all directions using only Pitch, Roll, and

Thrust so the rudder value sent from the ground application while in gesture control

mode is always in the middle (93). This heavily improved the hand gesture flight control.

4.7 Setting up quadcopter for flight

It is of utmost importance that the components of the quadcopter be turned ON and

checked in proper order otherwise the motors can receive garbage values and respond in

an unexpected way.

1. Make sure the Smart-phone is connected to the same network as ground station

or in case of 4G, internet is connected.

2. Connect the Smart-phone to the FTDI Chip using the USB (male - male) connec-

tor.

3. Once the ESCs are programmed (Beeps are finished and red LED is ON in con-

troller board), start up the ground base application.

4. Enter the IP Address and port number in the ground application after checking

from the Smart-phone interface.

5. Click Connect button and check the status on Smart-phone. It should say ”Con-

nected” in Connection Status.

6. Make sure the quadcopter is in emergency mode by checking the Mode in Smart-

phone.

7. Android Server Application.

8. USB mini to micro (male-male) Cable.

9. Custom built Decoding PCB.

10. HobbyKing Controller Board.

11. 5V FTDI USB-Serial converter chip.

Chapter 5. Results & Discussion 100

4.8 Final Product

The final product includes the following components:-

1. Carbon Fibre Body Quadcopter.

2. Leap Motion Device.

3. Leap Motion USB Cable.

4. Orego X Desktop Application.

5. Orego X Callibration Application.

6. Android Server Application.

7. USB mini to micro (male-male) Cable.

8. Custom built Decoding PCB.

9. HobbyKing Controller Board.

10. 5V FTDI USB-Serial converter chip.

4.9 Tests Carried Out

The biggest part of the project was trial and error . This trial and error method mainly

consisted of discovering the control values, gyro values, weight, battery positioning that

would allow the quad rotor to lift and gain straight vertical altitude. We discovered that

the quad rotor could lift itself with thrust value below 100 without the propeller guard

but needs a higher value with propeller guard on.

The control board needs to be input with a minimum thrust value of 59 for the motors

to start spinning. The yaw gyro pot was set to zero and the only way we configured

the yaw value was sent through the user side which turned out to be 93. We also had

to limit the roll and pitch value within +- 3 since they are very sensitive. The proper

pitch and roll for vertical lift off is also 93.

Chapter 5

Project Management

5.1 Updated Cost Table

Figure 5.1: The table shows all the parts which were bought from various sources
and countries including parts which were bought and brought personally from canada.

5.2 Gantt Chart

101

Chapter 6. Project Management 102

Chapter 6. Project Management 103

5.3 Tasks

1

Task Name: Modifying 3D body design

Accomplished By: Muhammad Obaidullah

Starting Date: 4 December 2013

Completion Date: 26 December 2013

Obstacles Faced:

• The Sketch Up did not allow modification of the motor mount unless the

landing pad was removed. Used an older version of the Sketch Up file

provided online and printed the leg separately.

Percentage Completion: 100%

Output: The quadcopter arms and body is now completely designed in Google

Sketch Up and can be exported as .stl format for printing using the Makerbot.

2

Task Name: Printing the 3D model and painting it

Accomplished By: Muhammad Obaidullah

Starting Date: 30 December 2013

Completion Date: 26 March 2014

Obstacles Faced:

• Several times, the electricity of the lab went and the model had to be

printed again.

• After repeated printing and experimenting, the size of the holes and arms

was modified for perfect fitting.

• Several test flights resulted in broken parts of the quadcopter, these parts

were printed again.

Percentage Completion: 100%

Output: PLA plastic body is completely printed using the lab’s 3D printer

and painted using spray paint.

Chapter 6. Project Management 104

3

Task Name: Reverse engineering the HobbyKing flight control board

Accomplished By: Muhammad Obaidullah

Starting Date: 28 January 2014

Completion Date: 12 March 2014

Obstacles Faced:

• Surface mount resistor values were very hard to find out because of small

size.

• The signals required by the flight control board were found and confirmed

using the oscilloscope.

Percentage Completion: 100%

Output: We know exactly what signals are coming out from the HobbyKing

flight control board and what input signals (Elevation, Aileron, Thrust,

Rudder) signals are required as inputs. It was also of utmost importance to

find out the Vp−p and duty cycle of the output PWM which is fed into the

ESCs (Electronic Speed Controllers).

4

Task Name: AtMega 328 to Android Protocol Development

Accomplished By: Muhammad Obaidullah

Starting Date: 12 March 2014

Completion Date: 26 March 2014

Obstacles Faced:

• Serial communication gives low error rate under slow bit rate and XBee

performs well close to 1200 bps serial data rate. Therefore the baud rate

was reduced to 1200 bps. And appropriate delay was added in the Serial

data read loop to wait for the next byte to arrive.

Percentage Completion: 100%

Output: Using this protocol, the quadcopter can be controlled completely.

The android smart-phone can send flight data and control the global position-

ing of the quadcopter.

Chapter 6. Project Management 105

5

Task Name: Configuring XBee for serial communication

Accomplished By: Muhammad Obaidullah

Starting Date: 26 March 2014

Completion Date: 27 March 2014

Obstacles Faced:

• New version of XCTU does not recognize the XBees bought. Downloaded

older version of XCTU and configured.

• The baud rate was reduced to 1200 bps to ensure low bit error rate.

This rate was chosen after many tests using the oscilloscope channel 1

connected to the RX pin of XBee to detect whether it received every byte

sent at different data speeds.

Percentage Completion: 100%

Output: The quadcopter can now be controlled by using either XCTU, C#

windows application, or Android application. The following link was used:

http://www.science.smith.edu/~jcardell/Courses/EGR328/Readings/

XbeeGettingStarted.pdf

6

Task Name: Capture video using Camera object

Accomplished By: : Sifat Sultan

Starting Date: 1 January 2014

Completion Date: 5 June 2014

Obstacles Faced:

• Our quad copter is required to take a video stream of the surrounding

and using any USB camera that are found in the market to carry out this

task is bad choice as with every addition of weight the battery life of the

quad copter is bound to reduce.

Percentage Completion: 100%

Output: Since the quad copter comes with smartphone which is intended to

do the task of providing with 4g communication service, it only makes sense to

use the other features that comes along with a standard android smartphone.

It comes with a powerful built in camera that can capture HD video. Therefore

we programmed the app to open the camera and capture the video through

the following code.

http://www.science.smith.edu/~jcardell/Courses/EGR328/Readings/XbeeGettingStarted.pdf
http://www.science.smith.edu/~jcardell/Courses/EGR328/Readings/XbeeGettingStarted.pdf

Chapter 6. Project Management 106

7

Task Name: Play Live Stream using HttpURLConnection

Accomplished By: : Sifat Sultan

Starting Date: 15 January 2014

Completion Date: 5 June 2014

Obstacles Faced:

• The smartphone will stream the video to a certain IP and Port address.

This stream is very efficiently encoded such that it needs powerful library

to be decoded.

• I planned to use a WebView or a Media Player to play the video streaming.

However; neither WebView nor Media Player in android is not powerful

enough to decode the stream and play video.

Percentage Completion: 100%

Output: I will use HttpURLConnection object to establish socket connection

between the user smartphone and the server smartphone that is mounted

on the quad copter. Once the connection is established the input stream

of the socket is opened. Then a Bitmap object will be used to decode the

jpeg image that is stored in the input stream using the function BitampFac-

tory.decodeStream(InputStream inputStream).

8

Task Name: Android background service for live video streaming

Accomplished By: Sifat Sultan

Starting Date: 30 March 2014

Completion Date: 15 April 2014

Obstacles Faced:

• The activity in the foreground should be able to bind to the background

service and access all data.

• Almost no documentation existed for streaming video from background.

Percentage Completion: 100%

Output: The andorid device which is mounted on top of the quadcopter can

stream live video using the 4G network, 3G network or WiFI internet.

Chapter 6. Project Management 107

9

Task Name: Android background service for getting direction from compass

Accomplished By: Muhammad Obaidullah

Starting Date: 5 April 2014

Completion Date: 15 April 2014

Obstacles Faced:

• Tried to implement the tilt compensated compass using the libraries pro-

vided by researchers in the field but found out that the tilt compensation

reduces the accuracy of the smart-phone compass.

• A smartphone compass does not provide the tilt compensated direction.

It is the raw compass direction where the value can be extremely wrong

if the orientation of the android phone itself is not correct.

Percentage Completion: 100%

Output: The andorid device which is mounted on top of the quadcopter

can know the direction of the quadcopter and is ready for performing flight

calculations.

10

Task Name: Ground Station Windows C# application interface design

Accomplished By: Muhammad Obaidullah

Starting Date: 2 February 2014

Completion Date: 20 February 2014

Obstacles Faced:

• Completely new to C# programming and no part of the C# appli-

cation is copied from internet. All lines of code written by

Obaidullah.

Percentage Completion: 100%

Output: Base station was designed to incorporate XBee communication

control.

Chapter 6. Project Management 108

11

Task Name: Embedding GPS functionality in the C# application.

Accomplished By: Muhammad Obaidullah

Starting Date: 28 April 2014

Completion Date: 23 May 2014

Obstacles Faced:

• GMap library was used to embed the map into the C# application.

• GMap provides many pre-built functions like drawing a polygon and defin-

ing GPS point using Latitude and longitude.

Percentage Completion: 100%

Output: The ground station can be used to set way-points for the quadcopter

to move and also get the updated longitude and latitude position of the

quadcopter back from the quadcopter.

12

Task Name: Embedding the XBee serial port in the C# application.

Accomplished By: Muhammad Obaidullah

Starting Date: 19 February 2014

Completion Date: 20 February 2014

Obstacles Faced:

• Programming the Serial port and changing the settings for the port by

using the combo box.

Percentage Completion: 100%

Output: The user can select the port to start communicating with the XBee

explorer and select the baud rate by which the user can communicate. The

data can be sent automatically using the hand gestures or it can be manually

entered in the text-boxes and sent.

Chapter 6. Project Management 109

13

Task Name: GPS follower background service for way-point determined flight

control.

Accomplished By: Muhammad Obaidullah & Sifat Sultan

Starting Date: 25 May 2014

Completion Date: 7 June 2014

Obstacles Faced:

• No previous knowledge of php and databases.

• Figuring out the perfect closed-loop control for reaching the way-point.

Percentage Completion: 45%

Output: The user can select the waypoints on the C# application and those

waypoints will be uploaded to the database. From the database, the waypoints

are grabbed by this background service and accordingly the OBFlightPackets

are generated to make the quadcopter go to the desired way-point.

14

Task Name: Embedding live update of the altitude in the C# application.

Accomplished By: Muhammad Obaidullah

Starting Date: 24 February 2014

Completion Date: 25 February 2014

Obstacles Faced:

• Getting the serial string from the XBee and performing string operations

to extract the height data.

Percentage Completion: 100%

Output: The sonar sensor which is mounted on the quadcopter can give live

height feedback to the micro-controller and XBee. The C# application shows

the current height in the nice progress bar.

Chapter 6. Project Management 110

15

Task Name: Writing the Arduino C code for the AtMega328.

Accomplished By: Muhammad Obaidullah

Starting Date: 11 February 2014

Completion Date: 27 May 2014

Obstacles Faced:

• Sonar sensor requires very slow triggers of about 20 Hertz. The micro-

processor cannot wait for the sonar sensor to send the sound signal, receive

the signal back and calculate the distance.

• Drawing a clear line between the inputs and the outputs of the quadcopter

system and figuring out the finite state machine diagram.

• Implementing the OBFLightPacket protocol in the C language by casting

the incoming data into byte array and send to the ESCs.

Percentage Completion: 100%

Output: The AtMega 328 chip can be mounted on the controller board and

the quadcopter is fully functional and ready with features such as AtMega

328 to android communication, height stabilization, XBee control, and mode

select.

Chapter 6. Project Management 111

16

Task Name: Designing & updating the circuit diagram for the controller

board.

Accomplished By: Muhammad Obaidullah

Starting Date: 4 February 2014

Completion Date: 26 March 2014

Obstacles Faced:

• The tilt compensated compass is connected via I2C Master-slave con-

figuration and the JTAG SPI programmer header is also connected to

AtMega328.

• Providing the 5V logic power to the circuit board by using the ESC 3 pin

headers.

• Kill switch is an essential and necessary requirement especially when in

initial testing stages. Implemented the kill switch using the infrared re-

ceiver.

Percentage Completion: 100%

Output: The quadcopter can communicate with the tilt compensated compass

and be programmed using the JTAG SPI header directly using the .hex format

binary file. Additionally, the power is given to the circuit board using the

ESC’s logic output. This improves the efficiency of the system because the

ESCs have a buck converter inside to step the voltage down from 11.1V to 5V

using the PWM switching regulation technique. Any TV remote with infrared

LEDs can be used to shut the quadcopter OFF completely as any change in

the infrared signal causes and interrupt to be raised whereby the quadcopter

switches immediately to the emergency mode/state.

Chapter 6. Project Management 112

17

Task Name: Soldering & mounting the equipment on the PCB

Accomplished By: Muhammad Obaidullah

Starting Date: 24 December 2013

Completion Date: 28 May 2014

Obstacles Faced:

• There was a vias under the AtMega so it had to be soldered before all

bracket was to be soldered.

• The PCB machine failed several times before a good PCB was printed.

A lot of time and effort was wasted in this. This also caused the project

to be delayed.

• The first versions had some faults in them so had to be printed again and

again.

Percentage Completion: 100%

Output: The quadcopter PCB is completely soldered with all the features

and ready to be mounted on top of the quadcopter for autonomous flight.

Chapter 6

Conclusion

A quad-copter might just be one of the more complicated project a beginner in this field

of RC drone can take. By ‘complicated’ we mean to say that it is not only unpredictable

but also ‘life-threatening’ at times. During the course of the project there were incidents

when the propeller caused sever injuries which forced us to dedicate a considerable

amount of our time in developing the safety features of it; propeller guard, wooden

frame, the emergency button and the socket timeout feature.The sheer sound of the

‘Turningy’ brushless motor can make the heart beat go fast. To imagine that all of our

complications are related to this motor it was very difficult to debug it or diagnose with

such fear from the motors. This of course have taught us some handy tricks like; always

take off the propellers when testing.

A visit to the RC drone forums gives a glimpse of how unpredictable this device

can behave as there are threads after threads in those forums written on the same issue

but had different solutions. This could be credited to the fact that there are various

modules in play; the receiver, controller board, gyro tuning, the esc and finally the

brushless motors, not to mention the quad copter body which underwent two changes

and other parts that had to be custom remade in the mechanical lab.

The significance of data types was one of those topics that we have come to appre-

ciate during this project. Data type should be chosen keeping in mind all the different

languages used in the modules and whether or not they will be able to interpret it

correctly.

This project was a tremendous learning experience and the sight of the quad copter

flying was nothing less then sheer delight.

113

Appendix A

C

114

Appendix A. C 115

Figure A.1: Arduino Uno Pinout

Appendix A. C 116

Figure A.2: C Data Type

Appendix B

Hardware used Manuals

117

Figure B.1: Huawei Smartphone

Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

Features

 High Performance, Low Power Atmel®AVR® 8-Bit Microcontroller Family

 Advanced RISC Architecture
̶ 131 Powerful Instructions – Most Single Clock Cycle Execution

̶ 32 x 8 General Purpose Working Registers

̶ Fully Static Operation

̶ Up to 20 MIPS Throughput at 20MHz

̶ On-chip 2-cycle Multiplier

 High Endurance Non-volatile Memory Segments
̶ 4/8/16/32KBytes of In-System Self-Programmable Flash program memory

̶ 256/512/512/1KBytes EEPROM

̶ 512/1K/1K/2KBytes Internal SRAM

̶ Write/Erase Cycles: 10,000 Flash/100,000 EEPROM

̶ Data retention: 20 years at 85C/100 years at 25C(1)

̶ Optional Boot Code Section with Independent Lock Bits
 In-System Programming by On-chip Boot Program
 True Read-While-Write Operation

̶ Programming Lock for Software Security

 Atmel® QTouch® library support
̶ Capacitive touch buttons, sliders and wheels

̶ QTouch and QMatrix® acquisition

̶ Up to 64 sense channels

 Peripheral Features
̶ Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode

̶ One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and
Capture Mode

̶ Real Time Counter with Separate Oscillator

̶ Six PWM Channels

̶ 8-channel 10-bit ADC in TQFP and QFN/MLF package
 Temperature Measurement

̶ 6-channel 10-bit ADC in PDIP Package
 Temperature Measurement

̶ Programmable Serial USART

̶ Master/Slave SPI Serial Interface

̶ Byte-oriented 2-wire Serial Interface (Philips I2C compatible)

̶ Programmable Watchdog Timer with Separate On-chip Oscillator

̶ On-chip Analog Comparator

̶ Interrupt and Wake-up on Pin Change

ATmega48A/PA/88A/PA/168A/PA/328/P

ATMEL 8-BIT MICROCONTROLLER WITH 4/8/16/32KB
IN-SYSTEM PROGRAMMABLE FLASH

SUMMARY DATASHEET

2ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

 Special Microcontroller Features
̶ Power-on Reset and Programmable Brown-out Detection

̶ Internal Calibrated Oscillator

̶ External and Internal Interrupt Sources

̶ Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby

 I/O and Packages
̶ 23 Programmable I/O Lines

̶ 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF

 Operating Voltage:
̶ 1.8 - 5.5V

 Temperature Range:
̶ -40C to 85C

 Speed Grade:
̶ 0 - 4MHz@1.8 - 5.5V, 0 - 10MHz@2.7 - 5.5.V, 0 - 20MHz @ 4.5 - 5.5V

 Power Consumption at 1MHz, 1.8V, 25C
̶ Active Mode: 0.2mA

̶ Power-down Mode: 0.1µA

̶ Power-save Mode: 0.75µA (Including 32kHz RTC)

3ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

1. Pin Configurations

Figure 1-1. Pinout ATmega48A/PA/88A/PA/168A/PA/328/P

1
2
3
4
5
6
7
8

24
23
22
21
20
19
18
17

(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4

GND
VCC
GND
VCC

(PCINT6/XTAL1/TOSC1) PB6
(PCINT7/XTAL2/TOSC2) PB7

PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
ADC7
GND
AREF
ADC6
AVCC
PB5 (SCK/PCINT5)

32 31 30 29 28 27 26 25

9 10 11 12 13 14 15 16

(P
C

IN
T

21
/O

C
0B

/T
1)

 P
D

5
(P

C
IN

T
22

/O
C

0A
/A

IN
0)

 P
D

6
(P

C
IN

T
23

/A
IN

1)
 P

D
7

(P
C

IN
T

0/
C

LK
O

/IC
P

1)
 P

B
0

(P
C

IN
T

1/
O

C
1A

)
P

B
1

(P
C

IN
T

2/
S

S
/O

C
1B

)
P

B
2

(P
C

IN
T

3/
O

C
2A

/M
O

S
I)

 P
B

3
(P

C
IN

T
4/

M
IS

O
)

P
B

4

P
D

2
(I

N
T

0/
P

C
IN

T
18

)
P

D
1

(T
X

D
/P

C
IN

T
17

)
P

D
0

(R
X

D
/P

C
IN

T
16

)
P

C
6

(R
E

S
E

T
/P

C
IN

T
14

)
P

C
5

(A
D

C
5/

S
C

L/
P

C
IN

T
13

)
P

C
4

(A
D

C
4/

S
D

A
/P

C
IN

T
12

)
P

C
3

(A
D

C
3/

P
C

IN
T

11
)

P
C

2
(A

D
C

2/
P

C
IN

T
10

)

32 TQFP Top View

1
2
3
4
5
6
7
8
9
10
11
12
13
14

28
27
26
25
24
23
22
21
20
19
18
17
16
15

(PCINT14/RESET) PC6
(PCINT16/RXD) PD0
(PCINT17/TXD) PD1
(PCINT18/INT0) PD2

(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4

VCC
GND

(PCINT6/XTAL1/TOSC1) PB6
(PCINT7/XTAL2/TOSC2) PB7

(PCINT21/OC0B/T1) PD5
(PCINT22/OC0A/AIN0) PD6

(PCINT23/AIN1) PD7
(PCINT0/CLKO/ICP1) PB0

PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10)
PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
GND
AREF
AVCC
PB5 (SCK/PCINT5)
PB4 (MISO/PCINT4)
PB3 (MOSI/OC2A/PCINT3)
PB2 (SS/OC1B/PCINT2)
PB1 (OC1A/PCINT1)

28 PDIP

1
2
3
4
5
6
7
8

24
23
22
21
20
19
18
17

32 31 30 29 28 27 26 25

9 10 11 12 13 14 15 16

32 MLF Top View

(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4

GND
VCC
GND
VCC

(PCINT6/XTAL1/TOSC1) PB6
(PCINT7/XTAL2/TOSC2) PB7

PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
ADC7
GND
AREF
ADC6
AVCC
PB5 (SCK/PCINT5)

(P
C

IN
T

21
/O

C
0B

/T
1)

 P
D

5
(P

C
IN

T
22

/O
C

0A
/A

IN
0)

 P
D

6
(P

C
IN

T
23

/A
IN

1)
 P

D
7

(P
C

IN
T

0/
C

LK
O

/IC
P

1)
 P

B
0

(P
C

IN
T

1/
O

C
1A

)
P

B
1

(P
C

IN
T

2/
S

S
/O

C
1B

)
P

B
2

(P
C

IN
T

3/
O

C
2A

/M
O

S
I)

 P
B

3
(P

C
IN

T
4/

M
IS

O
)

P
B

4

P
D

2
(I

N
T

0/
P

C
IN

T
18

)
P

D
1

(T
X

D
/P

C
IN

T
17

)
P

D
0

(R
X

D
/P

C
IN

T
16

)
P

C
6

(R
E

S
E

T
/P

C
IN

T
14

)
P

C
5

(A
D

C
5/

S
C

L/
P

C
IN

T
13

)
P

C
4

(A
D

C
4/

S
D

A
/P

C
IN

T
12

)
P

C
3

(A
D

C
3/

P
C

IN
T

11
)

P
C

2
(A

D
C

2/
P

C
IN

T
10

)

NOTE: Bottom pad should be soldered to ground.

1
2
3
4
5
6
7

21
20
19
18
17
16
15

28 27 26 25 24 23 22

8 9 10 11 12 13 14

28 MLF Top View

(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4

VCC
GND

(PCINT6/XTAL1/TOSC1) PB6
(PCINT7/XTAL2/TOSC2) PB7

(PCINT21/OC0B/T1) PD5

(P
C

IN
T

22
/O

C
0A

/A
IN

0)
 P

D
6

(P
C

IN
T

23
/A

IN
1)

 P
D

7
(P

C
IN

T
0/

C
LK

O
/IC

P
1)

 P
B

0
(P

C
IN

T
1/

O
C

1A
)

P
B

1
(P

C
IN

T
2/

S
S

/O
C

1B
)

P
B

2
(P

C
IN

T
3/

O
C

2A
/M

O
S

I)
 P

B
3

(P
C

IN
T

4/
M

IS
O

)
P

B
4

P
D

2
(I

N
T

0/
P

C
IN

T
18

)
P

D
1

(T
X

D
/P

C
IN

T
17

)
P

D
0

(R
X

D
/P

C
IN

T
16

)
P

C
6

(R
E

S
E

T
/P

C
IN

T
14

)
P

C
5

(A
D

C
5/

S
C

L/
P

C
IN

T
13

)
P

C
4

(A
D

C
4/

S
D

A
/P

C
IN

T
12

)
P

C
3

(A
D

C
3/

P
C

IN
T

11
)

PC2 (ADC2/PCINT10)
PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
GND
AREF
AVCC
PB5 (SCK/PCINT5)

NOTE: Bottom pad should be soldered to ground.

Table 1-1. 32UFBGA - Pinout ATmega48A/48PA/88A/88PA/168A/168PA

1 2 3 4 5 6

A PD2 PD1 PC6 PC4 PC2 PC1

B PD3 PD4 PD0 PC5 PC3 PC0

C GND GND ADC7 GND

D VDD VDD AREF ADC6

E PB6 PD6 PB0 PB2 AVDD PB5

F PB7 PD5 PD7 PB1 PB3 PB4

4ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

1.1 Pin Descriptions

1.1.1 VCC

Digital supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-
stated when a reset condition becomes active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier
and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator
amplifier.

If the Internal Calibrated RC Oscillator is used as chip clock source, PB7...6 is used as TOSC2...1 input for the
Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of Port B are elaborated in ”Alternate Functions of Port B” on page 83 and ”System
Clock and Clock Options” on page 27.

1.1.4 Port C (PC5:0)

Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5...0 output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-
stated when a reset condition becomes active, even if the clock is not running.

1.1.5 PC6/RESET

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6
differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than
the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is
given in Table 29-16 on page 311. Shorter pulses are not guaranteed to generate a Reset.

The various special features of Port C are elaborated in ”Alternate Functions of Port C” on page 86.|

1.1.6 Port D (PD7:0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-
stated when a reset condition becomes active, even if the clock is not running.

The various special features of Port D are elaborated in ”Alternate Functions of Port D” on page 89.

5ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

1.1.7 AVCC

AVCC is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally connected to
VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter.
Note that PC6...4 use digital supply voltage, VCC.

1.1.8 AREF

AREF is the analog reference pin for the A/D Converter.

1.1.9 ADC7:6 (TQFP and QFN/MLF Package Only)

In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter. These pins are
powered from the analog supply and serve as 10-bit ADC channels.

6ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

2. Overview

The ATmega48A/PA/88A/PA/168A/PA/328/P is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the
ATmega48A/PA/88A/PA/168A/PA/328/P achieves throughputs approaching 1 MIPS per MHz allowing the
system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are
directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one
single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC microcontrollers.

PORT C (7)PORT B (8)PORT D (8)

USART 0

8bit T/C 2

16bit T/C 18bit T/C 0 A/D Conv.

Internal
Bandgap

Analog
Comp.

SPI TWI

SRAMFlash

EEPROM

Watchdog
Oscillator

Watchdog
Timer

Oscillator
Circuits /

Clock
Generation

Power
Supervision
POR / BOD &

RESET

V
C

C

G
N

D
PROGRAM

LOGIC

debugWIRE

2

GND

AREF

AVCC

D
AT

A
B

U
S

ADC[6..7]PC[0..6]PB[0..7]PD[0..7]

6

RESET

XTAL[1..2]

CPU

7ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

The ATmega48A/PA/88A/PA/168A/PA/328/P provides the following features: 4K/8Kbytes of In-System
Programmable Flash with Read-While-Write capabilities, 256/512/512/1Kbytes EEPROM, 512/1K/1K/2Kbytes
SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with
compare modes, internal and external interrupts, a serial programmable USART, a byte-oriented 2-wire Serial
Interface, an SPI serial port, a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a
programmable Watchdog Timer with internal Oscillator, and five software selectable power saving modes. The
Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port,
and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the
Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the
asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is
sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and
ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is
running while the rest of the device is sleeping. This allows very fast start-up combined with low power
consumption.

Atmel® offers the QTouch® library for embedding capacitive touch buttons, sliders and wheels functionality into
AVR® microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully
debounced reporting of touch keys and includes Adjacent Key Suppression® (AKS™) technology for
unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop
and debug your own touch applications.

The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip ISP Flash
allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional
non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program
can use any interface to download the application program in the Application Flash memory. Software in the
Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-
While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a
monolithic chip, the Atmel ATmega48A/PA/88A/PA/168A/PA/328/P is a powerful microcontroller that provides a
highly flexible and cost effective solution to many embedded control applications.

The ATmega48A/PA/88A/PA/168A/PA/328/P AVR is supported with a full suite of program and system
development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit
Emulators, and Evaluation kits.

2.2 Comparison Between Processors

The ATmega48A/PA/88A/PA/168A/PA/328/P differ only in memory sizes, boot loader support, and interrupt
vector sizes. Table 2-1 summarizes the different memory and interrupt vector sizes for the devices.

Table 2-1. Memory Size Summary

Device Flash EEPROM RAM Interrupt Vector Size

ATmega48A 4KBytes 256Bytes 512Bytes 1 instruction word/vector

ATmega48PA 4KBytes 256Bytes 512Bytes 1 instruction word/vector

ATmega88A 8KBytes 512Bytes 1KBytes 1 instruction word/vector

ATmega88PA 8KBytes 512Bytes 1KBytes 1 instruction word/vector

ATmega168A 16KBytes 512Bytes 1KBytes 2 instruction words/vector

ATmega168PA 16KBytes 512Bytes 1KBytes 2 instruction words/vector

ATmega328 32KBytes 1KBytes 2KBytes 2 instruction words/vector

ATmega328P 32KBytes 1KBytes 2KBytes 2 instruction words/vector

8ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

ATmega48A/PA/88A/PA/168A/PA/328/P support a real Read-While-Write Self-Programming mechanism.
There is a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega
48A/48PA there is no Read-While-Write support and no separate Boot Loader Section. The SPM instruction can
execute from the entire Flash

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on
http://www.atmel.com/avr.

Note: 1.

4. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over
20 years at 85°C or 100 years at 25°C.

5. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device.
These code examples assume that the part specific header file is included before compilation. Be aware that not
all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler
dependent. Please confirm with the C compiler documentation for more details.

For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must
be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with
“SBRS”, “SBRC”, “SBR”, and “CBR”.

6. Capacitive Touch Sensing

The Atmel® QTouch® Library provides a simple to use solution to realize touch sensitive interfaces on most
Atmel AVR® microcontrollers. The QTouch Library includes support for the Atmel QTouch and Atmel QMatrix®
acquisition methods.

Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for the AVR
Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then
calling the touch sensing APIs to retrieve the channel information and determine the touch sensor states.

The QTouch Library is FREE and downloadable from the Atmel website at the following location:
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the Atmel QTouch
Library User Guide - also available for download from Atmel website.

9ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

7. Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFF) Reserved – – – – – – – –

(0xFE) Reserved – – – – – – – –

(0xFD) Reserved – – – – – – – –

(0xFC) Reserved – – – – – – – –

(0xFB) Reserved – – – – – – – –

(0xFA) Reserved – – – – – – – –

(0xF9) Reserved – – – – – – – –

(0xF8) Reserved – – – – – – – –

(0xF7) Reserved – – – – – – – –

(0xF6) Reserved – – – – – – – –

(0xF5) Reserved – – – – – – – –

(0xF4) Reserved – – – – – – – –

(0xF3) Reserved – – – – – – – –

(0xF2) Reserved – – – – – – – –

(0xF1) Reserved – – – – – – – –

(0xF0) Reserved – – – – – – – –

(0xEF) Reserved – – – – – – – –

(0xEE) Reserved – – – – – – – –

(0xED) Reserved – – – – – – – –

(0xEC) Reserved – – – – – – – –

(0xEB) Reserved – – – – – – – –

(0xEA) Reserved – – – – – – – –

(0xE9) Reserved – – – – – – – –

(0xE8) Reserved – – – – – – – –

(0xE7) Reserved – – – – – – – –

(0xE6) Reserved – – – – – – – –

(0xE5) Reserved – – – – – – – –

(0xE4) Reserved – – – – – – – –

(0xE3) Reserved – – – – – – – –

(0xE2) Reserved – – – – – – – –

(0xE1) Reserved – – – – – – – –

(0xE0) Reserved – – – – – – – –

(0xDF) Reserved – – – – – – – –

(0xDE) Reserved – – – – – – – –

(0xDD) Reserved – – – – – – – –

(0xDC) Reserved – – – – – – – –

(0xDB) Reserved – – – – – – – –

(0xDA) Reserved – – – – – – – –

(0xD9) Reserved – – – – – – – –

(0xD8) Reserved – – – – – – – –

(0xD7) Reserved – – – – – – – –

(0xD6) Reserved – – – – – – – –

(0xD5) Reserved – – – – – – – –

(0xD4) Reserved – – – – – – – –

(0xD3) Reserved – – – – – – – –

(0xD2) Reserved – – – – – – – –

(0xD1) Reserved – – – – – – – –

(0xD0) Reserved – – – – – – – –

(0xCF) Reserved – – – – – – – –

(0xCE) Reserved – – – – – – – –

(0xCD) Reserved – – – – – – – –

(0xCC) Reserved – – – – – – – –

(0xCB) Reserved – – – – – – – –

(0xCA) Reserved – – – – – – – –

(0xC9) Reserved – – – – – – – –

(0xC8) Reserved – – – – – – – –

(0xC7) Reserved – – – – – – – –

(0xC6) UDR0 USART I/O Data Register 192

(0xC5) UBRR0H USART Baud Rate Register High 196

(0xC4) UBRR0L USART Baud Rate Register Low 196

(0xC3) Reserved – – – – – – – –

(0xC2) UCSR0C UMSEL01 UMSEL00 UPM01 UPM00 USBS0 UCSZ01 /UDORD0 UCSZ00 / UCPHA0 UCPOL0 194/205

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 193

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 192

(0xBF) Reserved – – – – – – – –

(0xBE) Reserved – – – – – – – –

10ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 – 235

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 232

(0xBB) TWDR 2-wire Serial Interface Data Register 234

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 234

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 233

(0xB8) TWBR 2-wire Serial Interface Bit Rate Register 232

(0xB7) Reserved – – – – – – –

(0xB6) ASSR – EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB 159

(0xB5) Reserved – – – – – – – –

(0xB4) OCR2B Timer/Counter2 Output Compare Register B 158

(0xB3) OCR2A Timer/Counter2 Output Compare Register A 158

(0xB2) TCNT2 Timer/Counter2 (8-bit) 158

(0xB1) TCCR2B FOC2A FOC2B – – WGM22 CS22 CS21 CS20 157

(0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20 154

(0xAF) Reserved – – – – – – – –

(0xAE) Reserved – – – – – – – –

(0xAD) Reserved – – – – – – – –

(0xAC) Reserved – – – – – – – –

(0xAB) Reserved – – – – – – – –

(0xAA) Reserved – – – – – – – –

(0xA9) Reserved – – – – – – – –

(0xA8) Reserved – – – – – – – –

(0xA7) Reserved – – – – – – – –

(0xA6) Reserved – – – – – – – –

(0xA5) Reserved – – – – – – – –

(0xA4) Reserved – – – – – – – –

(0xA3) Reserved – – – – – – – –

(0xA2) Reserved – – – – – – – –

(0xA1) Reserved – – – – – – – –

(0xA0) Reserved – – – – – – – –

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) Reserved – – – – – – – –

(0x9C) Reserved – – – – – – – –

(0x9B) Reserved – – – – – – – –

(0x9A) Reserved – – – – – – – –

(0x99) Reserved – – – – – – – –

(0x98) Reserved – – – – – – – –

(0x97) Reserved – – – – – – – –

(0x96) Reserved – – – – – – – –

(0x95) Reserved – – – – – – – –

(0x94) Reserved – – – – – – – –

(0x93) Reserved – – – – – – – –

(0x92) Reserved – – – – – – – –

(0x91) Reserved – – – – – – – –

(0x90) Reserved – – – – – – – –

(0x8F) Reserved – – – – – – – –

(0x8E) Reserved – – – – – – – –

(0x8D) Reserved – – – – – – – –

(0x8C) Reserved – – – – – – – –

(0x8B) OCR1BH Timer/Counter1 - Output Compare Register B High Byte 136

 (0x8A) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte 136

(0x89) OCR1AH Timer/Counter1 - Output Compare Register A High Byte 136

(0x88) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte 136

(0x87) ICR1H Timer/Counter1 - Input Capture Register High Byte 136

(0x86) ICR1L Timer/Counter1 - Input Capture Register Low Byte 136

(0x85) TCNT1H Timer/Counter1 - Counter Register High Byte 135

(0x84) TCNT1L Timer/Counter1 - Counter Register Low Byte 135

(0x83) Reserved – – – – – – – –

(0x82) TCCR1C FOC1A FOC1B – – – – – – 135

(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 134

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 132

(0x7F) DIDR1 – – – – – – AIN1D AIN0D 238

(0x7E) DIDR0 – – ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 253

(0x7D) Reserved – – – – – – – –

(0x7C) ADMUX REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 250

(0x7B) ADCSRB – ACME – – – ADTS2 ADTS1 ADTS0 253

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 251

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

11ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

(0x79) ADCH ADC Data Register High byte 252

(0x78) ADCL ADC Data Register Low byte 252

(0x77) Reserved – – – – – – – –

(0x76) Reserved – – – – – – – –

(0x75) Reserved – – – – – – – –

(0x74) Reserved – – – – – – – –

(0x73) Reserved – – – – – – – –

(0x72) Reserved – – – – – – – –

(0x71) Reserved – – – – – – – –

(0x70) TIMSK2 – – – – – OCIE2B OCIE2A TOIE2 158

(0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 136

(0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0 110

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 75

(0x6C) PCMSK1 – PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 75

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 75

(0x6A) Reserved – – – – – – – –

(0x69) EICRA – – – – ISC11 ISC10 ISC01 ISC00 72

(0x68) PCICR – – – – – PCIE2 PCIE1 PCIE0

(0x67) Reserved – – – – – – – –

(0x66) OSCCAL Oscillator Calibration Register 38

(0x65) Reserved – – – – – – – –

(0x64) PRR PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI PRUSART0 PRADC 43

(0x63) Reserved – – – – – – – –

(0x62) Reserved – – – – – – – –

(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 38

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 55

0x3F (0x5F) SREG I T H S V N Z C 10

0x3E (0x5E) SPH – – – – – (SP10) 5. SP9 SP8 13

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 13

0x3C (0x5C) Reserved – – – – – – – –

0x3B (0x5B) Reserved – – – – – – – –

0x3A (0x5A) Reserved – – – – – – – –

0x39 (0x59) Reserved – – – – – – – –

0x38 (0x58) Reserved – – – – – – – –

0x37 (0x57) SPMCSR SPMIE (RWWSB)5. SIGRD (RWWSRE)5. BLBSET PGWRT PGERS SPMEN 280

0x36 (0x56) Reserved – – – – – – – –

0x35 (0x55) MCUCR – BODS(6) BODSE(6) PUD – – IVSEL IVCE 46/69/92

0x34 (0x54) MCUSR – – – – WDRF BORF EXTRF PORF 55

0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE 41

0x32 (0x52) Reserved – – – – – – – –

0x31 (0x51) Reserved – – – – – – – –

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 237

0x2F (0x4F) Reserved – – – – – – – –

0x2E (0x4E) SPDR SPI Data Register 170

0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X 169

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 168

0x2B (0x4B) GPIOR2 General Purpose I/O Register 2 26

0x2A (0x4A) GPIOR1 General Purpose I/O Register 1 26

0x29 (0x49) Reserved – – – – – – – –

0x28 (0x48) OCR0B Timer/Counter0 Output Compare Register B

0x27 (0x47) OCR0A Timer/Counter0 Output Compare Register A

0x26 (0x46) TCNT0 Timer/Counter0 (8-bit)

0x25 (0x45) TCCR0B FOC0A FOC0B – – WGM02 CS02 CS01 CS00

0x24 (0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00

0x23 (0x43) GTCCR TSM – – – – – PSRASY PSRSYNC 141/160

0x22 (0x42) EEARH (EEPROM Address Register High Byte) 5. 22

0x21 (0x41) EEARL EEPROM Address Register Low Byte 22

0x20 (0x40) EEDR EEPROM Data Register 22

0x1F (0x3F) EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE 22

0x1E (0x3E) GPIOR0 General Purpose I/O Register 0 26

0x1D (0x3D) EIMSK – – – – – – INT1 INT0 73

0x1C (0x3C) EIFR – – – – – – INTF1 INTF0 73

0x1B (0x3B) PCIFR – – – – – PCIF2 PCIF1 PCIF0

0x1A (0x3A) Reserved – – – – – – – –

0x19 (0x39) Reserved – – – – – – – –

0x18 (0x38) Reserved – – – – – – – –

0x17 (0x37) TIFR2 – – – – – OCF2B OCF2A TOV2 159

0x16 (0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 137

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

12ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and
SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status
Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega48A/PA/88A/PA/168A/PA/328/P is a complex microcontroller with more peripheral units than can be supported
within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF
in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. Only valid for ATmega88A/88PA/168A/168PA/328/328P.

6. BODS and BODSE only available for picoPower devices ATmega48PA/88PA/168PA/328P

0x15 (0x35) TIFR0 – – – – – OCF0B OCF0A TOV0

0x14 (0x34) Reserved – – – – – – – –

0x13 (0x33) Reserved – – – – – – – –

0x12 (0x32) Reserved – – – – – – – –

0x11 (0x31) Reserved – – – – – – – –

0x10 (0x30) Reserved – – – – – – – –

0x0F (0x2F) Reserved – – – – – – – –

0x0E (0x2E) Reserved – – – – – – – –

0x0D (0x2D) Reserved – – – – – – – –

0x0C (0x2C) Reserved – – – – – – – –

0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 93

0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 93

0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 93

0x08 (0x28) PORTC – PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 92

0x07 (0x27) DDRC – DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 92

0x06 (0x26) PINC – PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 93

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 92

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 92

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 92

0x02 (0x22) Reserved – – – – – – – –

0x01 (0x21) Reserved – – – – – – – –

0x0 (0x20) Reserved – – – – – – – –

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

13ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

8. Instruction Set Summary

Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd Rd Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd Rd K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd Rd Rr Z,N,V 1

COM Rd One’s Complement Rd 0xFF Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd 0x00 Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd Rd (0xFF - K) Z,N,V 1

INC Rd Increment Rd Rd + 1 Z,N,V 1

DEC Rd Decrement Rd Rd 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd Rd Rd Z,N,V 1

CLR Rd Clear Register Rd Rd Rd Z,N,V 1

SER Rd Set Register Rd 0xFF None 1

MUL Rd, Rr Multiply Unsigned R1:R0 Rd x Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0 Rd x Rr Z,C 2

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 Rd x Rr Z,C 2

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0 (Rd x Rr) << 1 Z,C 2

FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 (Rd x Rr) << 1 Z,C 2

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC Z None 2

JMP(1) k Direct Jump PC k None 3

RCALL k Relative Subroutine Call PC PC + k + 1 None 3

ICALL Indirect Call to (Z) PC Z None 3

CALL(1) k Direct Subroutine Call PC k None 4

RET Subroutine Return PC STACK None 4

RETI Interrupt Return PC STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd Rr Z, N,V,C,H 1

CPC Rd,Rr Compare with Carry Rd Rr C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC PC + 2 or 3 None 1/2/3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC PC + 2 or 3 None 1/2/3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC PC + 2 or 3 None 1/2/3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PCPC+k + 1 None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PCPC+k + 1 None 1/2

BREQ k Branch if Equal if (Z = 1) then PC PC + k + 1 None 1/2

BRNE k Branch if Not Equal if (Z = 0) then PC PC + k + 1 None 1/2

BRCS k Branch if Carry Set if (C = 1) then PC PC + k + 1 None 1/2

BRCC k Branch if Carry Cleared if (C = 0) then PC PC + k + 1 None 1/2

BRSH k Branch if Same or Higher if (C = 0) then PC PC + k + 1 None 1/2

BRLO k Branch if Lower if (C = 1) then PC PC + k + 1 None 1/2

BRMI k Branch if Minus if (N = 1) then PC PC + k + 1 None 1/2

BRPL k Branch if Plus if (N = 0) then PC PC + k + 1 None 1/2

BRGE k Branch if Greater or Equal, Signed if (N V= 0) then PC PC + k + 1 None 1/2

BRLT k Branch if Less Than Zero, Signed if (N V= 1) then PC PC + k + 1 None 1/2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC PC + k + 1 None 1/2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC PC + k + 1 None 1/2

BRTS k Branch if T Flag Set if (T = 1) then PC PC + k + 1 None 1/2

BRTC k Branch if T Flag Cleared if (T = 0) then PC PC + k + 1 None 1/2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC PC + k + 1 None 1/2

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC PC + k + 1 None 1/2

BRIE k Branch if Interrupt Enabled if (I = 1) then PC PC + k + 1 None 1/2

BRID k Branch if Interrupt Disabled if (I = 0) then PC PC + k + 1 None 1/2

14ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set Bit in I/O Register I/O(P,b) 1 None 2

CBI P,b Clear Bit in I/O Register I/O(P,b) 0 None 2

LSL Rd Logical Shift Left Rd(n+1) Rd(n), Rd(0) 0 Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n) Rd(n+1), Rd(7) 0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)C,Rd(n+1) Rd(n),CRd(7) Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)C,Rd(n) Rd(n+1),CRd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) Rd(n+1), n=0...6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3...0)Rd(7...4),Rd(7...4)Rd(3...0) None 1

BSET s Flag Set SREG(s) 1 SREG(s) 1

BCLR s Flag Clear SREG(s) 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) T None 1

SEC Set Carry C 1 C 1

CLC Clear Carry C 0 C 1

SEN Set Negative Flag N 1 N 1

CLN Clear Negative Flag N 0 N 1

SEZ Set Zero Flag Z 1 Z 1

CLZ Clear Zero Flag Z 0 Z 1

SEI Global Interrupt Enable I 1 I 1

CLI Global Interrupt Disable I 0 I 1

SES Set Signed Test Flag S 1 S 1

CLS Clear Signed Test Flag S 0 S 1

SEV Set Twos Complement Overflow. V 1 V 1

CLV Clear Twos Complement Overflow V 0 V 1

SET Set T in SREG T 1 T 1

CLT Clear T in SREG T 0 T 1

SEH Set Half Carry Flag in SREG H 1 H 1

CLH Clear Half Carry Flag in SREG H 0 H 1

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd K None 1

LD Rd, X Load Indirect Rd (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd (X), X X + 1 None 2

LD Rd, - X Load Indirect and Pre-Dec. X X - 1, Rd (X) None 2

LD Rd, Y Load Indirect Rd (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd (Y), Y Y + 1 None 2

LD Rd, - Y Load Indirect and Pre-Dec. Y Y - 1, Rd (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd (Y + q) None 2

LD Rd, Z Load Indirect Rd (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd (Z), Z Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z Z - 1, Rd (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd (k) None 2

ST X, Rr Store Indirect (X) Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X) Rr, X X + 1 None 2

ST - X, Rr Store Indirect and Pre-Dec. X X - 1, (X) Rr None 2

ST Y, Rr Store Indirect (Y) Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y) Rr, Y Y + 1 None 2

ST - Y, Rr Store Indirect and Pre-Dec. Y Y - 1, (Y) Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) Rr None 2

ST Z, Rr Store Indirect (Z) Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z) Rr, Z Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z Z - 1, (Z) Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) Rr None 2

STS k, Rr Store Direct to SRAM (k) Rr None 2

LPM Load Program Memory R0 (Z) None 3

LPM Rd, Z Load Program Memory Rd (Z) None 3

LPM Rd, Z+ Load Program Memory and Post-Inc Rd (Z), Z Z+1 None 3

SPM Store Program Memory (Z) R1:R0 None -

IN Rd, P In Port Rd P None 1

OUT P, Rr Out Port P Rr None 1

PUSH Rr Push Register on Stack STACK Rr None 2

POP Rd Pop Register from Stack Rd STACK None 2

MCU CONTROL INSTRUCTIONS

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1

Mnemonics Operands Description Operation Flags #Clocks

15ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

Note: 1. These instructions are only available in ATmega168PA and ATmega328P.

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

Mnemonics Operands Description Operation Flags #Clocks

16ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

9. Ordering Information

9.1 ATmega48A

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering
information and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.

3. See ”Speed Grades” on page 308.

4. NiPdAu Lead Finish.

5. Tape & Reel.

6. Use ”ATmega48PA” on page 17, industrial (-40C to 105C) as the ATmega48A (-40C to 105C) is not presently offered.

Speed (MHz) Power Supply (V) Ordering Code(2) Package(1) Operational Range(6)

20(3) 1.8 - 5.5

ATmega48A-AU
ATmega48A-AUR(5)

ATmega48A-CCU
ATmega48A-CCUR(5)

ATmega48A-MMH(4)

ATmega48A-MMHR(4)(5)

ATmega48A-MU
ATmega48A-MUR(5)

ATmega48A-PU

32A
32A
32CC1
32CC1
28M1
28M1
32M1-A
32M1-A
28P3

Industrial
(-40C to 85C)

Package Type

32A 32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)

32CC1 32-ball, 4 x 4 x 0.6 mm package, ball pitch 0.5 mm, Ultra Thin, Fine-Pitch Ball Grill Array (UFBGA)

28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)

17ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

9.2 ATmega48PA

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering
information and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.

3. See ”Speed Grades” on page 308.

4. NiPdAu Lead Finish.

5. Tape & Reel.

Speed (MHz)(3) Power Supply (V) Ordering Code(2) Package(1) Operational Range

20 1.8 - 5.5

ATmega48PA-AU
ATmega48PA-AUR(5)

ATmega48PA-CCU
ATmega48PA-CCUR(5)

ATmega48PA-MMH(4)

ATmega48PA-MMHR(4)(5)

ATmega48PA-MU
ATmega48PA-MUR(5)

ATmega48PA-PU

32A
32A
32CC1
32CC1
28M1
28M1
32M1-A
32M1-A
28P3

Industrial
(-40C to 85C)

ATmega48PA-AN
ATmega48PA-ANR(5)

ATmega48PA-MMN(4)

ATmega48PA-MMNR(4)(5)

ATmega48PA-MN
ATmega48PA-MNR(5)

ATmega48PA-PN

32A
32A
28M1
28M1
32M1-A
32M1-A
28P3

Industrial
(-40C to 105C)

Package Type

32A 32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)

32CC1 32-ball, 4 x 4 x 0.6mm package, ball pitch 0.5mm, Ultra Thin, Fine-Pitch Ball Grill Array (UFBGA)

28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)

18ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

9.3 ATmega88A

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering
information and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also
Halide free and fully Green.

3. See ”Speed Grades” on page 308.

4. NiPdAu Lead Finish.

5. Tape & Reel.

6. Use ”ATmega88PA” on page 19, industrial (-40C to 105C) as the ATmega48A (-40C to 105C) is not presently offered.

Speed (MHz) Power Supply (V) Ordering Code(2) Package(1) Operational Range(6)

20(3) 1.8 - 5.5

ATmega88A-AU
ATmega88A-AUR(5)

ATmega88A-CCU
ATmega88A-CCUR(5)

ATmega88A-MMH(4)

ATmega88A-MMHR(4)(5)

ATmega88A-MU
ATmega88A-MUR(5)

ATmega88A-PU

32A
32A
32CC1
32CC1
28M1
28M1
32M1-A
32M1-A
28P3

Industrial
(-40C to 85C)

Package Type

32A 32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)

32CC1 32-ball, 4 x 4 x 0.6mm package, ball pitch 0.5mm, Ultra Thin, Fine-Pitch Ball Grill Array (UFBGA)

28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)

19ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

9.4 ATmega88PA

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering
information and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also
Halide free and fully Green.

3. See ”Speed Grades” on page 308.

4. NiPdAu Lead Finish.

5. Tape & Reel.

Speed (MHz)(3) Power Supply (V) Ordering Code(2) Package(1) Operational Range

20 1.8 - 5.5

ATmega88PA-AU
ATmega88PA-AUR(5)

ATmega88PA-CCU
ATmega88PA-CCUR(5)

ATmega88PA-MMH(4)

ATmega88PA-MMHR(4)(5)

ATmega88PA-MU
ATmega88PA-MUR(5)

ATmega88PA-PU

32A
32A
32CC1
32CC1
28M1
28M1
32M1-A
32M1-A
28P3

Industrial
(-40C to 85C)

ATmega88PA-AN
ATmega88PA-ANR(5)

ATmega88PA-MMN(4)

ATmega88PA-MMNR(4)(5)

ATmega88PA-MN
ATmega88PA-MNR(5)

ATmega88PA-PN

32A
32A
28M1
28M1
32M1-A
32M1-A
28P3

Industrial
(-40C to 105C)

Package Type

32A 32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)

32CC1 32-ball, 4 x 4 x 0.6mm package, ball pitch 0.5 mm, Ultra Thin, Fine-Pitch Ball Grill Array (UFBGA)

28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)

20ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

9.5 ATmega168A

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering
information and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also
Halide free and fully Green.

3. See ”Speed Grades” on page 308

4. NiPdAu Lead Finish.

5. Tape & Reel.

6. Use ”ATmega168PA” on page 21, industrial (-40C to 105C) as the ATmega48A (-40C to 105C) is not presently
offered.

Speed (MHz)(3) Power Supply (V) Ordering Code(2) Package(1) Operational Range(6)

20 1.8 - 5.5

ATmega168A-AU
ATmega168A-AUR(5)

ATmega168A-CCU
ATmega168A-CCUR(5)

ATmega168A-MMH(4)

ATmega168A-MMHR(4)(5)

ATmega168A-MU
ATmega168A-MUR(5)

ATmega168A-PU

32A
32A
32CC1
32CC1
28M1
28M1
32M1-A
32M1-A
28P3

Industrial
(-40C to 85C)

Package Type

32A 32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)

32CC1 32-ball, 4 x 4 x 0.6 mm package, ball pitch 0.5mm, Ultra Thin, Fine-Pitch Ball Grill Array (UFBGA)

28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)

21ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

9.6 ATmega168PA

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering
information and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also
Halide free and fully Green.

3. See ”Speed Grades” on page 308.

4. NiPdAu Lead Finish.

5. Tape & Reel.

Speed (MHz)(3) Power Supply (V) Ordering Code(2) Package(1) Operational Range

20 1.8 - 5.5

ATmega168PA-AU
ATmega168PA-AUR(5)

ATmega168PA-CCU
ATmega168PA-CCUR(5)

ATmega168PA-MMH(4)

ATmega168PA-MMHR(4)(5)

ATmega168PA-MU
ATmega168PA-MUR(5)

ATmega168PA-PU

32A
32A
32CC1
32CC1
28M1
28M1
32M1-A
32M1-A
28P3

Industrial
(-40C to 85C)

20 1.8 - 5.5

ATmega168PA-AN
ATmega168PA-ANR(5)

ATmega168PA-MN
ATmega168PA-MNR(5)

ATmega168PA-PN

32A
32A
32M1-A
32M1-A
28P3

Industrial
(-40C to 105C)

Package Type

32A 32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)

32CC1 32-ball, 4 x 4 x 0.6mm package, ball pitch 0.5mm, Ultra Thin, Fine-Pitch Ball Grill Array (UFBGA)

28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)

22ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

9.7 ATmega328

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering
information and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also
Halide free and fully Green.

3. See Figure 29-1 on page 309.

4. NiPdAu Lead Finish.

5. Tape & Reel

6. Use ”ATmega328P” on page 23, industrial (-40C to 105C) as the ATmega48A (-40C to 105C) is not presently offered.

Speed (MHz) Power Supply (V) Ordering Code(2) Package(1) Operational Range(6)

20(3) 1.8 - 5.5

ATmega328-AU
ATmega328-AUR(5)

ATmega328-MMH(4)

ATmega328-MMHR(4)(5)

ATmega328-MU
ATmega328-MUR(5)

ATmega328-PU

32A
32A
28M1
28M1
32M1-A
32M1-A
28P3

Industrial
(-40C to 85C)

Package Type

32A 32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)

28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)

32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

23ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

9.8 ATmega328P

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering
information and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also
Halide free and fully Green.

3. See Figure 29-1 on page 309.

4. NiPdAu Lead Finish.

5. Tape & Reel.

Speed (MHz)(3) Power Supply (V) Ordering Code(2) Package(1) Operational Range

20 1.8 - 5.5

ATmega328P-AU
ATmega328P-AUR(5)

ATmega328P-MMH(4)

ATmega328P-MMHR(4)(5)

ATmega328P-MU
ATmega328P-MUR(5)

ATmega328P-PU

32A
32A
28M1
28M1
32M1-A
32M1-A
28P3

Industrial
(-40C to 85C)

ATmega328P-AN
ATmega328P-ANR(5)

ATmega328P-MN
ATmega328P-MNR(5)

ATmega328P-PN

32A
32A
32M1-A
32M1-A
28P3

Industrial
(-40C to 105C)

Package Type

32A 32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)

28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP)

32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

24ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

10. Packaging Information

10.1 32A

TITLE DRAWING NO. REV.

32A, 32-lead, 7 x 7mm body size, 1.0mm body thickness,
0.8mm lead pitch, thin profile plastic quad flat package (TQFP)

C32A

2010-10-20

PIN 1 IDENTIFIER

0°~7°

PIN 1

L

C

A1 A2 A

D1

D

e
E1 E

B

Notes:
 1. This package conforms to JEDEC reference MS-026, Variation ABA.
 2. Dimensions D1 and E1 do not include mold protrusion. Allowable
 protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum
 plastic body size dimensions including mold mismatch.
 3. Lead coplanarity is 0.10mm maximum.

 A – – 1.20

 A1 0.05 – 0.15

 A2 0.95 1.00 1.05

 D 8.75 9.00 9.25

 D1 6.90 7.00 7.10 Note 2

 E 8.75 9.00 9.25

 E1 6.90 7.00 7.10 Note 2

 B 0.30 – 0.45

 C 0.09 – 0.20

 L 0.45 – 0.75

 e 0.80 TYP

COMMON DIMENSIONS
(Unit of measure = mm)

SYMBOL MIN NOM MAX NOTE

25ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

10.2 32CC1

TITLE DRAWING NO.GPC REV.
 Package Drawing Contact:
 packagedrawings@atmel.com BCAG

32CC1, 32-ball (6 x 6 Array), 4 x 4 x 0.6 mm
package, ball pitch 0.50 mm, Ultra Thin,
Fine-Pitch Ball Grid Array (UFBGA)

32CC1

A – – 0.60

A1 0.12 – –

A2 0.38 REF

b 0.25 0.30 0.35 1

b1 0.25 – – 2

D 3.90 4.00 4.10

D1 2.50 BSC

E 3.90 4.00 4.10

E1 2.50 BSC

e 0.50 BSC

07/06/10

b1

COMMON DIMENSIONS
(Unit of Measure = mm)

1 2 3 4 5 6

B
A

C

D

E

F

E

D

e

32-Øb

E

D

B

A

Pin#1 ID

0.08

A1
A

D1

E1

A2

A1 BALL CORNER

1 2 3 4 5 6

F

C
SIDE VIEW

BOTTOM VIEW

TOP VIEW

SYMBOL MIN NOM MAX NOTE

Note1: Dimension “b” is measured at the maximum ball dia. in a plane parallel
 to the seating plane.
 Note2: Dimension “b1” is the solderable surface defined by the opening of the
 solder resist layer.

e

26ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

10.3 28M1

TITLE DRAWING NO.GPC REV.
 Package Drawing Contact:
 packagedrawings@atmel.com 28M1ZBV B

28M1, 28-pad, 4 x 4 x 1.0mm Body, Lead Pitch 0.45mm,
2.4 x 2.4mm Exposed Pad, Thermally Enhanced
Plastic Very Thin Quad Flat No Lead Package (VQFN)

10/24/08

SIDE VIEW

Pin 1 ID

BOTTOM VIEW

TOP VIEW

Note: The terminal #1 ID is a Laser-marked Feature.

D

E

e

K

A1

C

 A

D2

E2

y

L

1

2

3

b

1

2

3

0.45 COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOT E

 A 0.80 0.90 1.00

 A1 0.00 0.02 0.05

 b 0.17 0.22 0.27

 C 0.20 REF

 D 3.95 4.00 4.05

 D2 2.35 2.40 2.45

 E 3.95 4.00 4.05

 E2 2.35 2.40 2.45

 e 0.45

 L 0.35 0.40 0.45

 y 0.00 – 0.08

 K 0.20 – –

R 0.20

0.4 Ref
(4x)

27ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

10.4 32M1-A

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

D1

D

E1 E

eb

A3
A2

A1
 A

D2

E2

0.08 C

L

1

2

3

P

P

0
1

2

3

 A 0.80 0.90 1.00

 A1 – 0.02 0.05

 A2 – 0.65 1.00

 A3 0.20 REF

 b 0.18 0.23 0.30

 D

 D1

 D2 2.95 3.10 3.25

4.90 5.00 5.10

4.70 4.75 4.80

4.70 4.75 4.80

4.90 5.00 5.10

E

 E1

 E2 2.95 3.10 3.25

 e 0.50 BSC

 L 0.30 0.40 0.50

 P – – 0.60

 – – 12o

Note: JEDEC Standard MO-220, Fig. 2 (Anvil Singulation), VHHD-2.

TOP VIEW

SIDE VIEW

BOTTOM VIEW

0

Pin 1 ID

Pin #1 Notch
(0.20 R)

K 0.20 – –

K

K

32M1-A , 32-pad, 5 x 5 x 1.0mm Body, Lead Pitch 0.50mm,
 3.10mm Exposed Pad, Micro Lead Frame Package (MLF) 32M1-A

03/14/2014

F

28ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

10.5 28P3

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO. REV.
28P3, 28-lead (0.300"/7.62mm Wide) Plastic Dual
Inline Package (PDIP) B28P3

09/28/01

PIN
1

E1

A1

B

REF

E

B1

C

L

SEATING PLANE

A

0º ~ 15º

D

e

eB

B2
(4 PLACES)

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

 A – – 4.5724

 A1 0.508 – –

 D 34.544 – 34.798 Note 1

 E 7.620 – 8.255

 E1 7.112 – 7.493 Note 1

 B 0.381 – 0.533

 B1 1.143 – 1.397

 B2 0.762 – 1.143

 L 3.175 – 3.429

 C 0.203 – 0.356

 eB – – 10.160

 e 2.540 TYP

 Note: 1. Dimensions D and E1 do not include mold Flash or Protrusion.
 Mold Flash or Protrusion shall not exceed 0.25mm (0.010").

29ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

11. Errata

11.1 Errata ATmega48A

The revision letter in this section refers to the revision of the ATmega48A device.

11.1.1 Rev. D

• Analog MUX can be turned off when setting ACME bit

• TWI Data setup time can be too short

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1'
(ADMUX[3:0]=1xxx), all MUXes are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. TWI Data setup time can be too short

When running the device as a TWI slave with a system clock above 2MHz, the data setup time for the first
bit after ACK may in some cases be too short. This may cause a false start or stop condition on the TWI
line.

Problem Fix/Workaround

Insert a delay between setting TWDR and TWCR.

11.2 Errata ATmega48PA

The revision letter in this section refers to the revision of the ATmega48PA device.

11.2.1 Rev. A

• Power consumption in power save modes

• Startup time for the device

1. Power consumption in power save modes

Power consumption in power save modes will be higher due to improper control of internal power

management.48

Problem Fix/Workaround

This problem will be corrected in Rev B.

2. Startup time for the device

Due to implementation of a different NVM structure, the startup sequence for the device will require

longer startup time.

Problem Fix/Workaround

There is no fix for this problem.

11.2.2 Rev. D

• Analog MUX can be turned off when setting ACME bit

• TWI Data setup time can be too short

1. Analog MUX can be turned off when setting ACME bit

30ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1'
(ADMUX[3:0]=1xxx), all MU Xes are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. TWI Data setup time can be too short

When running the device as a TWI slave with a system clock above 2MHz, the data setup time for the first
bit after ACK may in some cases be too short. This may cause a false start or stop condition on the TWI
line.

Problem Fix/Workaround

Insert a delay between setting TWDR and TWCR.

11.3 Errata ATmega88A

The revision letter in this section refers to the revision of the ATmega88A device.

11.3.1 Rev. F

• Analog MUX can be turned off when setting ACME bit

• TWI Data setup time can be too short

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1'
(ADMUX[3:0]=1xxx), all MU Xes are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. TWI Data setup time can be too short

When running the device as a TWI slave with a system clock above 2MHz, the data setup time for the first
bit after ACK may in some cases be too short. This may cause a false start or stop condition on the TWI
line.

Problem Fix/Workaround

Insert a delay between setting TWDR and TWCR.

11.4 Errata ATmega88PA

The revision letter in this section refers to the revision of the ATmega88PA device.

11.4.1 Rev. F

• Analog MUX can be turned off when setting ACME bit

• TWI Data setup time can be too short

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1'
(ADMUX[3:0]=1xxx), all MUXes are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. TWI Data setup time can be too short

31ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

When running the device as a TWI slave with a system clock above 2MHz, the data setup time for the first
bit after ACK may in some cases be too short. This may cause a false start or stop condition on the TWI
line.

Problem Fix/Workaround

Insert a delay between setting TWDR and TWCR.

11.4.2 Rev. A

• Power consumption in power save modes

• Startup time for the device

1. Power consumption in power save modes

Power consumption in power save modes will be higher due to improper control of internal power

management.48

Problem Fix/Workaround

This problem will be corrected in Rev B.

2. Startup time for the device

Due to implementation of a different NVM structure, the startup sequence for the device will require

longer startup time.

Problem Fix/Workaround

There is no fix for this problem.

11.5 Errata ATmega168A

The revision letter in this section refers to the revision of the ATmega168A device.

11.5.1 Rev. E

• Analog MUX can be turned off when setting ACME bit

• TWI Data setup time can be too short

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1'
(ADMUX[3:0]=1xxx), all MUXes are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. TWI Data setup time can be too short

When running the device as a TWI slave with a system clock above 2MHz, the data setup time for the first
bit after ACK may in some cases be too short. This may cause a false start or stop condition on the TWI
line.

Problem Fix/Workaround

Insert a delay between setting TWDR and TWCR.

11.6 Errata ATmega168PA

The revision letter in this section refers to the revision of the ATmega168PA device.

32ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

11.6.1 Rev E

• Analog MUX can be turned off when setting ACME bit

• TWI Data setup time can be too short

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1'
(ADMUX[3:0]=1xxx), all MUXes are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. TWI Data setup time can be too short

When running the device as a TWI slave with a system clock above 2MHz, the data setup time for the first
bit after ACK may in some cases be too short. This may cause a false start or stop condition on the TWI
line.

Problem Fix/Workaround

Insert a delay between setting TWDR and TWCR.

33ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

11.7 Errata ATmega328

The revision letter in this section refers to the revision of the ATmega328 device.

11.7.1 Rev D

• Analog MUX can be turned off when setting ACME bit

• TWI Data setup time can be too short

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1'
(ADMUX[3:0]=1xxx), all MUX es are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. TWI Data setup time can be too short

When running the device as a TWI slave with a system clock above 2MHz, the data setup time for the first
bit after ACK may in some cases be too short. This may cause a false start or stop condition on the TWI
line.

Problem Fix/Workaround

Insert a delay between setting TWDR and TWCR.

11.7.2 Rev C

Not sampled.

11.7.3 Rev B

• Analog MUX can be turned off when setting ACME bit

• Unstable 32kHz Oscillator

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1'
(ADMUX[3:0]=1xxx), all MUXes are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. Unstable 32kHz Oscillator

The 32kHz oscillator does not work as system clock. The 32kHz oscillator used as asynchronous timer is
inaccurate.

Problem Fix/ Workaround

None.

11.7.4 Rev A

• Analog MUX can be turned off when setting ACME bit

• Unstable 32kHz Oscillator

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1'
(ADMUX[3:0]=1xxx), all MUXes are turned off until the ACME bit is cleared.

34ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. Unstable 32kHz Oscillator

The 32kHz oscillator does not work as system clock. The 32kHz oscillator used as asynchronous timer is
inaccurate.

Problem Fix/ Workaround

None.

11.8 Errata ATmega328P

The revision letter in this section refers to the revision of the ATmega328P device.

11.8.1 Rev D

• Analog MUX can be turned off when setting ACME bit

• TWI Data setup time can be too short

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1'
(ADMUX[3:0]=1xxx), all MUXes are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. TWI Data setup time can be too short

When running the device as a TWI slave with a system clock above 2MHz, the data setup time for the first
bit after ACK may in some cases be too short. This may cause a false start or stop condition on the TWI
line.

Problem Fix/Workaround

Insert a delay between setting TWDR and TWCR.

11.8.2 Rev C

Not sampled.

11.8.3 Rev B

• Analog MUX can be turned off when setting ACME bit

• Unstable 32kHz Oscillator

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3 in ADMUX is '1'
(ADMUX[3:0]=1xxx), all MUXes are turned off until the ACME bit is cleared.

Problem Fix/Workaround

Clear the MUX3 bit before setting the ACME bit.

2. Unstable 32kHz Oscillator

The 32kHz oscillator does not work as system clock. The 32kHz oscillator used as asynchronous timer is
inaccurate.

Problem Fix/ Workaround

35ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

None.

11.8.4 Rev A

• Unstable 32kHz Oscillator

1. Unstable 32kHz Oscillator

The 32kHz oscillator does not work as system clock. The 32kHz oscillator used as asynchronous timer is
inaccurate.

Problem Fix/ Workaround

None.

36ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

12. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision
in this section are referring to the document revision.

12.1 Rev. 8271H – 08/2013

12.2 Rev. 8271G – 02/2013

12.3 Rev. 8271F – 08/2012

1.
Updated text in section Section 16.9.3 ”Fast PWM Mode” on page 124 concerning compare units allowing
generation of PWM waveforms (on page 126), referring to table 16-2.

2. Updated WDT Assembly code example in Section 10.10.5 ”Watchdog Timer” on page 44 (and onwards)

3.

Updated footnote 1 for tables giving DC Characteristics in ”ATmega48PA DC Characteristics – Current
Consumption” on page 320, ”ATmega88PA DC Characteristics – Current Consumption” on page 321,
”ATmega168P DC Characteristics – Current Consumption” on page 321 and ”ATmega328P DC Characteristics –
Current Consumption” on page 322.

4. Figure 31-1 on page 324 has been updated with the correct plot.

5. Figure 31-333 on page 499 has been updated with the correct plot.

6. Changed description of external interrupt behavior in deep sleep in Section 13. ”External Interrupts” on page 71.

7. Added wait delay for tWD_FUSE in Table 28-18 on page 298.

7. Updated errata for rev A of 48PA and 88PA in Section 11.2 on page 29 and Section 11.4 on page 30.

8. Updated back page and footer according to datasheet template of 05/2014

1. Added ”Electrical Characteristics (TA = -40°C to 105°C)” on page 319.

2. Added ”ATmega48PA Typical Characteristics – (TA = -40°C to 105°C)” on page 523.

3. Added ”ATmega88PA Typical Characteristics – (TA = -40°C to 105°C)” on page 547.

4. Added ”ATmega168PA Typical Characteristics – (TA = -40°C to 105°C)” on page 571.

5. Added ”ATmega328P Typical Characteristics – (TA = -40°C to 105°C)” on page 596.

1. Added ”DC Characteristics” on page 301. The following tables for DC characteristics - TA = -40C to 105C added:

Table 29-4 on page 304

Table 29-7 on page 305

Table 29-10 on page 307

Table 29-13 on page 308

2. Replaced the following typical characteristics by the plots that include les characteristics at “TA = -40C to 105C”:

”ATmega48PA Typical Characteristics” on page 349

”ATmega88PA Typical Characteristics” on page 398

”ATmega168PA Typical Characteristics” on page 448

”ATmega328P Typical Characteristics” on page 498

37ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

12.4 Rev. 8271E – 07/2012

12.5 Rev. 8271D – 05/11

12.6 Rev. 8271C – 08/10

3.
Removed the Power Save (Psave) maximum numbers for all devices throughout ”Electrical Characteristics – (TA =
-40°C to 85°C)” on page 301.

4.
Changed the powerdown maximum numbers from 8.5 and 3µA to 10 and 5µA (ATmega48PA, ATmega88PA,
ATmega168PA and ATmega328P).

5.
Changed the table note “Maximum values are characterized values and not test limits in production” to “Max values
are test limits in production throughout ”Electrical Characteristics – (TA = -40°C to 85°C)” on page 301.

1. Updated Figure 1-1 on page 3. Overlined “RESET” in 28 MLF top view and in 32 MLF top view.

2.
Added EEAR9 bit to the ”EEARH and EEARL – The EEPROM Address Register” on page 22 and updated the all bit
descriptions accordingly.

3.
Added a footnote “EEAR9 and EEAR8 are unused bits in ATmega48A/48PA and must always be written to zero” to
”EEARH and EEARL – The EEPROM Address Register” on page 22.

4.
Updated Table 18-8 on page 156, “Waveform Generation Mode Bit Description” . WGM2, WGM1 and WGM0
changed to WGM22, WGM21 and WGM20 respectively.

5.
Updated ”TCCR2B – Timer/Counter Control Register B” on page 157. bit 2 (CS22) and bit 3 (WGM22) changed
from R (read only) to R/W (read/write).

6. Updated the definition of fosc on page 173. fosc is the system clock frequency (not XTAL pin frequency)

7.
Updated ”SPMCSR – Store Program Memory Control and Status Register” on page 263. Bit 0 renamed SPMEN
and added bit 5 “SIGRD”.

8.
Replaced “SELFPRGEN” by “SPMEN” throughout the whole datasheet including in the “code examples”, except in
”Program And Data Memory Lock Bits” on page 282 and in ”Fuse Bits” on page 283.

9. Updated ”Register Summary” on page 9 to include the bits: SIGRD and SPMEN in the SMPCSR register.

10. Updated the Table 29-1 on page 301. Removed the footnote.

11. Updated the footnote of the Table 29-18 on page 312. Removed the footnote “Note 2”.

12. Updated ”Errata” on page 29. Added “Errata” TWI Data setup time can be too short.

1. Added Atmel QTouch Sensing Capability Feature

2. Updated ”Register Description” on page 92 with PINxn as R/W.

3. Added a footnote to the PINxn, page 92.

4. Updated “Ordering Information”,”ATmega328” on page 22. Added “ATmega328-MMH” and “ATmega328-MMHR”.

5.
Updated “Ordering Information”,”ATmega328P” on page 23. Added “ATmega328P-MMH” and “ATmega328P-
MMHR”.

6. Added “Ordering Information” for ATmega48PA/88PA/168PA/328P @ 105C
7. Updated ”Errata ATmega328” on page 33 and ”Errata ATmega328P” on page 34

8. Updated the datasheet according to the Atmel new brand style guide.

1. Added 32UFBGA Pinout, Table 1-1 on page 3.

2. Updated the “SRAM Data Memory”, Figure 8-3 on page 19.

3. Updated ”Ordering Information” on page 16 with CCU and CCUR code related to “32CC1” Package drawing.

4. “32CC1” Package drawing added ”Packaging Information” on page 24.

38ATmega48A/PA/88A/PA/168A/PA/328/P [DATASHEET]
Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014

12.7 Rev. 8271B – 04/10

12.8 Rev. 8271A – 12/09

1. Updated Table 9-8 with correct value for timer oscillator at xtal2/tos2

2. Corrected use of SBIS instructions in assembly code examples.

3.
Corrected BOD and BODSE bits to R/W in Section 10.11.2 on page 46, Section 12.5 on page 69 and Section 14.4
on page 92

4.
Figures for bandgap characterization added, Figure 31-34 on page 341, Figure 31-81 on page 366, Figure 31-128
on page 391, Figure 31-176 on page 417, Figure 31-223 on page 441, Figure 31-271 on page 467, Figure 31-318
on page 491 and Figure 31-365 on page 516.

5. Updated ”Packaging Information” on page 24 by replacing 28M1 with a correct corresponding package.

1.
New datasheet 8271 with merged information for ATmega48PA, ATmega88PA, ATmega168PA and ATmega48A,
ATmega88A andATmega168A. Also included information on ATmega328 and ATmega328P

2

Changes done:

̶ New devices added: ATmega48A/ATmega88A/ATmega168A and ATmega328

̶ Updated Feature Description

̶ Updated Table 2-1 on page 7

̶ Added note for BOD Disable on page 41.

̶ Added note on BOD and BODSE in ”MCUCR – MCU Control Register” on page 92 and ”Register
Description” on page 280

̶ Added limitation information for the application ”Boot Loader Support – Read-While-Write Self-
Programming” on page 265

̶ Added limitation information for ”Program And Data Memory Lock Bits” on page 282

̶ Added specified DC characteristics

̶ Added typical characteristics

̶ Removed exception information in ”Address Match Unit” on page 214.

̶

̶

XX X XX X
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2014 Atmel Corporation. / Rev.: Atmel-8271HS-AVR- ATmega-Datasheet Summary_08/2014.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

(AD
C
5)PC

5
28

(AD
C
4)PC

4
27

(AD
C
3)PC

3
26

(AD
C
2)PC

2
25

(AD
C
1)PC

1
24

(AD
C
0)PC

0)
23

(SC
K)PB5

19

(M
ISO

)PB4
18

(M
O
SI)PB3

17

(SS)PB2
16

(O
C
1)PB1

15

(IC
P)PB0

14

(AIN
1)PD

7
13

(AIN
0)PD

6
12

(T1)PD
5

11

(T0)PD
4

6

(IN
T1)PD

3
5

(IN
T0)PD

2
4

(TXD
)PD

1
3

(R
XD

)PD
0

2

G
N
D

8
VC

C
7

AVC
C

20
AR

EF
21

XTAL1
9

XTAL2
10

R
ESET

1

AG
N
D

22

1
2

3
4

5
6

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 101 2 3 4 5 6

11

22

3
3

1234

P$1P$1 P$2P$2

1

IN
3

O
U
T

42

(AIN
0/IN

T1)PD
1

7

(AIN
2/PC

IN
T11)PC

2
5

(C
TS/H

W
B/AIN

6/TO
/IN

T7)PD
7

13

(IN
T4/IC

P1/C
LK0)PC

7
22

(IN
T5/AIN

3)PD
4

10

(O
C
0B/IN

T0)PD
0

6

(O
C
1A/PC

IN
T8)PC

6
23

(PC
IN
T5)PB5

19
(PC

IN
T6)PB6

20
(PC

IN
T7/O

C
0A/O

C
1C

)PB7
21

(PC
IN
T9/O

C
1B)PC

5
25

(PC
IN
T10)PC

4
26

(PD
0/M

ISO
/PC

IN
T3)PB3

17

(PD
I/M

O
SI/PC

IN
T2)PB2

16

(R
TS/AIN

5/IN
T6)PD

6
12

(R
XD

1/AIN
1/IN

T2)PD
2

8

(SC
LK/PC

IN
T1)PB1

15

(SS/PC
IN
T0)PB0

14

(T1/PC
IN
T4)PB4

18

(TXD
1/IN

T3)PD
3

9

(XC
K/AIN

4/PC
IN
T12)PD

5
11

AVC
C

32

D
+

29
D
-

30

G
N
D

3

PAD
33

R
ESET(PC

1/D
W
)

24

U
C
AP

27

U
G
N
D

28

U
VC

C
31

VC
C

4

XTAL1
1

XTAL2(PC
0)

2

1
2

3
4

5
6

2
1

2
1

1 8

2
7

3
6

45

1 827

36

4 5

1
8

2
7

3
6

4
5

1
8

2
7

3
6

4
5

1 2
3 4

2 3
1

6 5
7

84

1
2

3
4

5

IN
1

O
N
/O
FF

3

N
C
/FB

4

O
U
T

5

G
N
D

2
12345678

2 1

The Multi-Rotor Controller

Table of Contents

Introduction to the Multi-Rotor controller...2
Flight Configurations ...2
Updating the Firmware..3
Mounting the Multi-Rotor controller in your Multi-Rotor...8
Multi-Rotor (+Configuration)..9
Setting up the Multi-Rotor controller...10

Introduction to the Multi-Rotor controller

The Multi-Rotor controller is a flight control board for 4 rotor Aircraft (Multi-Rotors). Its purpose is
to stabilise the aircraft during flight. To do this it takes the signal from the three gyros on the board
(roll, pitch and yaw) and feeds the information into the Integrated Circuit (Atmega IC). This then
processes the information according the software and sends out a control signal to the Electronic
Speed Controllers (ESCs) which are plugged onto the board and also connected to the motors.
Depending upon the signal from the IC the ESCs will either speed up or slow down the motors in
order to establish level flight.

The board also takes a control signal from the Remote Control Receiver (RX) and feeds this into the
IC via the ail, ele, thr and rud pins on the board. After processing this information, the IC will then
send out a signal to the motors (Via the M1 to M4 pins on the board) to speed up or slow down to
achieve controlled flight (up, down, backwards, forwards, left, right, yaw) on the command from
the RC Pilot sent via his Transmitter (TX).

Flight Configurations

The Multi-Rotor flight configurations depend on which firmware is loaded onto the chip.

This configuration is Multi-Rotor (4 Rotor + configuration).

Updating the Firmware

The Multi-Rotor board has an Atmega328P chip on board which allows users to tweak and load non
standard firmware.

Set IC Fuses & Flashing the Firmware

Connect a USBasp Programmer to the six pin ISP header on the
Multi-Rotor controller board.

Connect your Programmer's 6 pin socket to the ISP header on the board. Pin 1 on the ISP header is
usually marked with a small triangle. Then connect the a 5V DC power source to the PCB pins.

Open AVR Studio 4. It will ask you if you want to begin a new project, or open an existing project.
Choose Cancel and click on the connect icon.

It will open a new window with a connection dialogue asking you to select your programmer and
connection port. With a programmer like the AVRISP mkII it is easy because when you select that
programmer it brings back only one choice of port... USB. The AVR-ISP500 from Olimex is
recognised as a STK500 and has the option to auto choose the port. If it fails to recognise the port,
you may need to manually set the port for the programmer in your Windows device settings to
COM1 up to COM4 for AVR Studio to recognise it.

When you have chosen your programmer and port, click connect and you will be taken to the AVR
programming dialogue.

In the AVR programming window go to the "Main" tab and make sure that the chip you are
programming (e.g. Atmega328P) is selected in the "Device and Signature Bytes" drop down menu.
Also make sure that the" Programming mode and target settings are set to ISP. Make sure that the
settings for the ISP mode have the ISP frequency set low enough to talk to the chip.
Programmer's frequency can set to 115.2 kHz. This is quite an important setting to get right. If you
click on "Read Signature" and you get the response "Signature matches selected device" you have
successfully managed to connect to your IC.

Also make sure that the target board or PCB is powered (You can check this by clicking on the HW
Settings tab and checking if the programmer can see any voltage).

Now it is time to set the fuses so click on the "Fuses" tab. AVR Studio is very good in this respect as
it will work out the fuse settings for your particular IC depending upon the check box options you
choose.

Set the check boxes according to the following.

SELFPRGEN: unchecked
RSTDISBL: unchecked
DWEN: unchecked
SPIEN: checked
WDTON: unchecked
EESAVE: unchecked
BODLEVEL: Brown-out detection at VCC=1.8 V
CKDIV8 : unchecked
CKOUT: unchecked
SUT_CKSEL: Int. RC Osc. 8 MHz; Start-up time PWRDWN/RESET: 6 CK/14 CK + 65 ms
The fuse setting output will be displayed at the bottom of the window.

Check the "Auto read" "Smart warnings" and "Verify after programming" options at the bottom of
the window and then click program.

If all goes to plan, you should get OK response messages in the output section at the bottom of your
window for Entering Programming mode, writing fuse address, reading fuse address, Fuse bits
verification and leaving programming mode.

If you get error messages, then recheck your chip version and all the connections from your
programmer to the board and that the power is on. Also make sure that your fuse settings are as
described above.

Flash the Firmware

Click on the "Program" tab and have a look at the "Flash" section which is the 2nd section down.
Check the "Input HEX file" check box. Then browse the unzipped firmware folder and click on
your firmware HEX file suitable for the chip you are programming for an Atmega328P. Then click
"Program" in the Flash section of the window and you should get an OK response in the output
section at the bottom of the window. Then click "Verify" to make sure that the program has been
successfully uploaded and if you have an OK response coming back at the bottom of the window
then you have successfully programmed the IC with the test program.

Mounting the Multi-Rotor controller in your Multi-Rotor.

The Multi-Rotor controller uses Murata piezo gyros that are less sensitive to vibration than SMD
type gyros, but it is still a good idea to mount the board on a vibration dampening material. The
board must also be mounted with the white arrow facing the direction of forward flight.

When connecting your Remote Control Receiver (RX) you must connect the white signal wire of
the channels (CH1, CH2, CH3 and CH4) from your RX corresponding to the aileron, elevator,
throttle and rudder to the inner pins on the board while the red (VCC) wires are connected to the
center pins, and the black (GND) wires are connected to the pins on the outer edge of your board.

The pins marked M1 to M4 are connected to the 3 pin BEC plug from your ESCs. They follow the
same convention as the RX pins with the white wires connected to the inner pins, the red wires to
the center pins and the black wires to the outer pins. The ESCs and the connected motors are
plugged onto the pins M1 to M4 in the following order depending on flight rotor configuration.
Note also the direction of rotation for each motor. This is achieved by connecting the three ESC
wires to the motors and swapping two of the wires to achieve rotation in the opposite direction.

Multi-Rotor (+ Configuration)

Setting up the Multi-Rotor controller

1.Checking transmitter channels:

-Take off the propellers.
-Turn on transmitter and flight controller.
-Set throttle to about 1/4. Motors should start.
-Move pitch (elevator) stick forward. Back motor should speed up. If not, reverse pitch (elevator)
channel.
-Move roll (aileron) stick to the left. Right motor should speed up. If not, reverse roll (aileron)
channel.
-Move yaw (rudder) stick to the left. Front and back motor should speed up. If not, reverse yaw
(rudder) channel.

2. Transmitter throttle adjustment:

- Turn on transmitter and flight controller.
- If led does not turn on and stays on, lower your trim.
- If still no go, you may need to reverse the throttle channel.
- Arm your board by putting the left stick down and to the right for the LED to come on. If this does
not happen, adjust your throttle and yaw trim down and to the right on your transmitter. Make sure
you do not have any mixing switches on your Transmitter enabled.

3. Initial transmitter ATV/servo range settings:

- Pitch (elevator): 50%
- Roll (aileron): 50%
- Yaw (rudder): 100%

4. ESC throttle range:

- Turn yaw pot to zero.
- Turn on transmitter.
- Throttle stick to full.
- Turn on flight controller.
- Wait until the ESCs beep twice after the initial beeps. (Depend on which ESC's)
- Throttle stick to off. ESCs beep.
- Turn off flight controller.
- Restore the yaw pot.

5. Initial Gyro gain pot value is 50%. Increase until it starts to oscillate rapidly, then back off until it
is stable again. Fast forward flight needs lower gain.

Too low gain is recognised by the Multi-Rotor being hard to control and/or always wanting to tip
over.

6. Checking gyro directions:

- Take off the propellers.
- Turn on transmitter and flight controller.
- Set throttle to about 1/4. Motors should start.
- Tilt Multi-Rotor forward. Forward motor should speed up. If not, reverse pitch gyro.
- Tilt Multi-Rotor to the left. Left motor should speed up. If not, reverse roll gyro.
- Turn Multi-Rotor CW. Front and back motor should speed up. If not, reverse yaw gyro.

7. Reversing gyros:

- Set roll gain pot to zero.
- Turn on flight controller.
- LED flashes rapidly 10 times.
- Move the stick for the gyro you want to reverse.
- LED will blink continually.
- Turn off flight controller.
- If there is more gyros to be reversed, go to step 2, else set roll gain pot back.

8.Final check:

Place the Multi-Rotor on the ground, stand back a safe distance and slowly advance to about 1/2
throttle. Hold it steady when you start increasing the throttle, because the Multi-Rotor controller
calibrates its gyros when throttle leaves zero, and then the gyros need to be at rest.

If the Multi-Rotor tries to twist away, check propeller and motor directions, gyro placement and
trim
settings. A slight twist is OK.

If not, try to twist the quad. It should resist your movements. More gyro gain gives more resistance.
If it starts to oscillate, reduce the gain. You should not need to reduce the gain below 40%.

Note: the correct procedure for taking off from the ground is as following:
1: The quad and its propellers needs to be motionless.
2: Increase the throttle (collective). Just as the throttle leaves zero, gyro calibration is performed.
3: Enjoy! And remember to close the throttle if you lose control. Much less damage.

NOTES: Do not use bigger propellers than you need. Light propellers gives faster response and
more stability. Try to get it to hover at about mid stick (1/3 to 2/3 throttle). Use smaller/bigger
propeller, different motor Kv or more/less Battery cells to achieve that.

Bibliography

[1] Jennifer Bell. (2013) Road accidents account for almost 70% of head injuries at one

UAE hospital [Online]. Available: http://www.thenational.ae/uae/health/

road-accidents-account-for-almost-70-of-head-injuries-at-one-uae-hospital

[2] ADAFRUIT (2010) FTDI Friend – Breakout Board+ (tutorial)

[Online]. Available: http://www.adafruit.com/blog/2010/09/16/

ftdi-friend-breakout-board-tutorial/

[3] Prospector. Polylactic Acid (PLA) Typical Properties [On-

line]. Available: http://plastics.ides.com/generics/34/c/t/

polylactic-acid-pla-properties-processing

[4] Mark Johnson Cutler. (2010) Design and Control of an Autonomous Variable-

Pitch Quadrotor Helicopter [Online]. Available: http://acl.mit.edu/papers/

Cutler_Masters12.pdf

[5] Leap Motion Documentation. (2013) Understanding the Java Sample Applica-

tion [Online]. Available: https://developer.leapmotion.com/documentation/

Languages/Java/Guides/Sample_Java_Tutorial.html

[6] Mando. How a Gyro Works [Online]. Available: https://learn.sparkfun.com/

tutorials/gyroscope/how-a-gyro-works

[7] Philips Semiconductors Remote Control System RC-5 Including Command Ta-

bles,http://www.praktiker.at/download/itmubu06.pdf, Publication No. 9388

706 23011, December 1992.

[8] Wikipedia, the free encyclopedia Radar gun, http://en.wikipedia.org/wiki/

Radar_gun, 2013.

[9] Pan, D., “A Tutorial on MPEG/Audio Compression,” IEEE Multimedia, Vol.2,

pp.60-74, Summer 1998.

[10] Neltronics, ”How does a Speed Camera or Radar Gun work?”, http:

//www.neltronics.com.au/downloads/Bel%20-%20How%20does%20a%20Speed%

20Camera%20or%20Radar%20Gun%20work.pdf, 18 May 2011 [6 June 2013].

172

http://www.thenational.ae/uae/health/road-accidents-account-for-almost-70-of-head-injuries-at-one-uae-hospital
http://www.thenational.ae/uae/health/road-accidents-account-for-almost-70-of-head-injuries-at-one-uae-hospital
http://www.adafruit.com/blog/2010/09/16/ftdi-friend-breakout-board-tutorial/
http://www.adafruit.com/blog/2010/09/16/ftdi-friend-breakout-board-tutorial/
http://plastics.ides.com/generics/34/c/t/polylactic-acid-pla-properties-processing
http://plastics.ides.com/generics/34/c/t/polylactic-acid-pla-properties-processing
http://acl.mit.edu/papers/Cutler_Masters12.pdf
http://acl.mit.edu/papers/Cutler_Masters12.pdf
https://developer.leapmotion.com/documentation/Languages/Java/Guides/Sample_Java_Tutorial.html
https://developer.leapmotion.com/documentation/Languages/Java/Guides/Sample_Java_Tutorial.html
https://learn.sparkfun.com/tutorials/gyroscope/how-a-gyro-works
https://learn.sparkfun.com/tutorials/gyroscope/how-a-gyro-works
http://www.praktiker.at/download/itmubu06.pdf
http://en.wikipedia.org/wiki/Radar_gun
http://en.wikipedia.org/wiki/Radar_gun
http://www.neltronics.com.au/downloads/Bel%20-%20How%20does%20a%20Speed%20Camera%20or%20Radar%20Gun%20work.pdf
http://www.neltronics.com.au/downloads/Bel%20-%20How%20does%20a%20Speed%20Camera%20or%20Radar%20Gun%20work.pdf
http://www.neltronics.com.au/downloads/Bel%20-%20How%20does%20a%20Speed%20Camera%20or%20Radar%20Gun%20work.pdf

Bibliography 173

[11] Wikipedia.org, ”Regenerative Receiver”, http://en.wikipedia.org/wiki/File:

Regenerative_Receiver.png, 4 January 2005 [6 June 2013].

[12] Peter Jakab, ”Infrared circuits for remote control”, http://jap.hu/electronic/

infrared.html, [6 June 2013].

[13] Stuart Clare, ”Functional MRI : Methods and Applications”, Page 6, Paragraph

1 and 2, http://users.fmrib.ox.ac.uk/~stuart/thesis/fmri.pdf, October

1997 [6 June 2013].

[14] Michael Brady, ”Basics of MRI”, Pages 14 - 20. http://www.robots.ox.ac.uk/

~jmb/lectures/medimanallecture1.pdf, 2004 [6 June 2013].

[15] Ben Beiske, ”Living the Dream”. http://www.travelblog.org/Photos/4009932,

[6 June 2013].

[16] Radio Receivers, ”Chapter 2 Principles of radio transmission”, Paragraph 2.

http://www.mikroe.com/old/books/rrbook/chapter2/chapter2.htm, 2003 [6

June 2013].

http://en.wikipedia.org/wiki/File:Regenerative_Receiver.png
http://en.wikipedia.org/wiki/File:Regenerative_Receiver.png
http://jap.hu/electronic/infrared.html
http://jap.hu/electronic/infrared.html
http://users.fmrib.ox.ac.uk/~stuart/thesis/fmri.pdf
http://www.robots.ox.ac.uk/~jmb/lectures/medimanallecture1.pdf
http://www.robots.ox.ac.uk/~jmb/lectures/medimanallecture1.pdf
http://www.travelblog.org/Photos/4009932
http://www.mikroe.com/old/books/rrbook/chapter2/chapter2.htm

Bibliography

[1] Sullivan. Using an ir remote to control an arduino project, 2013.

URL http://sullivan-22-201-fall2013.blogspot.ae/2013/11/

using-ir-remote-to-control-arduino.html.

174

http://sullivan-22-201-fall2013.blogspot.ae/2013/11/using-ir-remote-to-control-arduino.html
http://sullivan-22-201-fall2013.blogspot.ae/2013/11/using-ir-remote-to-control-arduino.html

	Declaration of Authorship
	Abstract
	Acknowledgements
	
	
	

	Contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Project Background
	
	
	Quadcopter:
	Leap Motion:
	
	Quad Copter Application
	

	1.2 Problem Discussion
	
	
	

	2 Design
	2.1 Project Description
	
	
	

	2.1.1 Using a UAV for agility and accessibility
	

	2.1.2 Use of a quadcopter for ease of control and high payload delivery
	
	
	Forward Direction:
	Left Direction:
	Right Direction:
	Backward Direction:

	2.1.3 Global control by using on-board 4G smartphone
	

	2.1.4 Live streaming video vision by using UDP
	
	
	
	

	2.1.5 Smartphone to Controller Board USB Connection
	

	2.2 Hand Gesture Models
	
	
	

	2.3 Kalman Filter
	
	

	2.4 Communication
	2.4.1 XBee
	2.4.1.1 The Advantages of Zigbee over other Technologies
	

	2.4.1.2 Zigbee for Quadcopter-User Communication
	
	
	
	

	2.5 Android
	
	2.5.1 Leap Motion

	2.6 Arduino
	

	2.7 Navigation Design
	2.8 Data Communication Design
	
	

	2.9 Sources Explained
	2.9.1 Client
	

	2.9.2 Server
	
	
	
	
	

	2.10 3D Model Design
	

	2.11 Gyroscope Sensor
	
	
	
	

	2.12 An unexpected tragedy
	
	2.12.1 Temperature Sensitivity of PLA plastic used in 3D printer
	

	2.12.2 Strength of PLA plastic
	

	2.13 New Body Design
	

	2.14 Circuit Design
	2.14.1 Circuit Design Version 1
	2.14.2 Circuit Design Version 2

	2.15 PCB Design
	
	

	2.16 Safety Design
	2.16.1 Emergency Button
	
	
	
	

	2.16.2 Control Box
	2.16.3 The Wooden Frame
	2.16.3.1 Introduction
	
	

	2.16.3.2 Use
	

	2.16.3.3 Materials Used
	2.16.3.4 Structure
	
	
	
	
	

	2.16.3.5 Problems Faced
	

	3 Implementation
	3.1 Balancing the Quad-copter
	3.2 Custom Circuit Board
	

	3.3 Setting up Quadcopter for flight
	

	3.4 Final Product
	

	3.5 PCB
	3.6 Frame
	3.7 Module Requirement and Performance
	3.7.1 Transmitter
	3.7.1.1 C Sharp Ground Application
	

	3.7.1.2 Remapping the Pitch
	
	
	
	

	3.7.1.3 Remapping the Roll
	
	
	
	

	3.7.1.4 Remapping the Thrust
	
	
	
	
	

	3.7.1.5 Emergency

	3.7.2 Control Board
	
	
	

	3.7.2.1 Balancing the Quad-copter
	3.7.2.2 Tuning Elevation
	

	3.7.3 Tuning Aileron
	

	3.7.4 Tuning Rudder
	
	3.7.4.1 Blocking Rudder Change
	
	

	3.7.5 ESC
	3.7.5.1 Propeller

	3.8 Air Flow

	4 Results & Discussion
	4.1 Custom 3D Designed Body
	
	

	4.1.1 Version 1 - PLA Plastic, Unchanged print
	
	

	4.1.2 Version 2 - PLA Plastic, Modified print
	
	

	4.1.3 Version 3 - Carbon Fiber Body
	

	4.2 Leap Motion Library for Gesture Control
	

	4.3 Payload Capability calculation using MATLAB
	

	4.4 Weight Calculation of the Quadcopter.
	4.5 Serial Communication Protocol Development Trials
	
	4.5.1 Trial 1
	
	
	Disadvantages

	4.5.1.1 Packet Transfer Time
	
	

	4.5.2 Trial 2
	
	Disadvantages

	4.5.2.1 Helper Function - Converting String to Number
	4.5.2.2 Packet Transfer Time
	
	
	

	4.5.3 Trial 3 - Applied Method
	
	

	4.5.3.1 Packet Transfer Time
	
	
	

	4.6 IR Emergency Button Trials
	
	

	4.6.1 Trial 1 - Code Message Driven
	
	
	
	The problem:

	4.6.2 Trial 2 - Interrupt Driven
	

	4.6.3 KK Control Board Malfunction
	
	

	4.7 Setting up quadcopter for flight
	

	4.8 Final Product
	

	4.9 Tests Carried Out

	5 Project Management
	5.1 Updated Cost Table
	5.2 Gantt Chart
	5.3 Tasks

	6 Conclusion
	
	
	

	A C
	B Hardware used Manuals
	Bibliography

