
Abu Dhabi University

CEN 464 - Digital Signal Processing

Lab Report 3

Applying Advanced Filters to Image &
Object Detection using MATLAB

Authors:
Muhammad Obaidullah 1030313

Supervisor:
Dr. Mohammed Assad Ghazal

Section 1

June 9, 2014

Contents

1 Objectives of the lab 2

2 List of equipment used 2

3 Load and display an image from hard disk. 2

4 Distinguish between imtools and imshow and their features. 3

5 Separate the color channels of an RGB image and discuss it 3

6 Cut a part of the image 4

7 Convert an image from color to gray level 5

8 Doing block processing on an image 6

9 Use overlapping block processing (nlfiltering) on an image 8

10 Low Pass Filtering 9

11 Sobel and Prewit operators for high-pass filtering 12
11.1 Sobel Filter . 12
11.2 Prewitt Filter . 13

12 Canny Edge detection 15

13 Gray-Level thresholding with morphological operations 16
13.1 Final Steps . 17

1

Abstract

In this lab we were introduced to Image Processing Toolbox provided in MATLAB. We
were exposed to simple image cropping, various types filtering and applying 2 dimensional Fast
Fourier Transform on an image.

1 Objectives of the lab

• Load and display an image from hard disk.

• Distinguish between imtools and imshow and their features.

• Separate the color channels of an RGB signal and discuss it.

• Cut a part of the image.

• Convert an image from color to gray level.

• Use non-overlapping block processing on an image. Discuss the effect of changing the block
size.

• Use overlapping block processing on an image. Discuss the effect of changing the block size.

• Study the effect of low-pass filtering in the time and frequency domain. Use the plot of H(w)
for an the low-pass filtered image to prove it is corresponding to a low-pass filter.

• Use Sobel and Prewit operators to high-pass filter an image.

• Use Canny Edge detection and compare it with Sobel’s edge detection.

• Use gray-level thresholding with morphological operations to extract the cameraman from his
image.

2 List of equipment used

• A Computer.

• MATLAB.

• Image Processing Toolbox.

3 Load and display an image from hard disk.

To read a image from hard-drive, the following command is written:

1 x = imread (”C:\ Users \Muhammad\Desktop\ image . png”) ;

2

4 Distinguish between imtools and imshow and their features.

To show the image, we can do one of the following commands:

1 imshow (x) ;

As the name suggests, this command only just displays the image in a window with several basic
options including saving the file as image into the hard-disk.
OR

1 imtoo l (x) ;

This command provide more tools and options to the user by providing several additional options
such as zoom and detailed pixel under cursor information. When the cursor is moved on the picture,
the detailed information about the pixel under the cursor such as Red value, green value, blue value,
x position, and y position.

Figure 1: The image which is displayed by
using the imshow() command.

Figure 2: The image which is displayed by
using the imtool() command.

5 Separate the color channels of an RGB image and discuss it

Let’s select a color channel of an image in MATLAB:

1 % read the image in to MATLAB
peppers = imread (’ peppers . png ’) ;

3 % s e l e c t a l l o f the x , y but s e l e c t red channel
redpeppers = peppers (: , : , 1) ;

5 % Show the red peppers by advanced imtoo l
imtoo l (redpeppers)

7 % s e l e c t a l l o f the x , y but s e l e c t blue channel

3

bluepeppers = peppers (: , : , 3) ;
9 % Show the blue peppers by advanced imtoo l

imtoo l (b luepeppers)

Figure 3: The blue channel of the peppers
image. The image is majorly black because
the peppers image does not contain a lot of
blue pixels.

Figure 4: The red channel of the peppers
image. As we can notice that there are many
white areas. That is because the image is
largely red.

6 Cut a part of the image

If we think of an image as a matrix, we can select some elements of the matrix and copy them
into a new and smaller matrix. This is known as cropping an image. All computer image editing
software use this technique behind the scenes. What a user essentially does is to select the corners
of bounding box by drawing a rectangle on the image and then the software selects the pixels inside
that rectangle, copies them onto a new matrix and displays it.

Let’s do this cropping for ourselves in MATLAB:

% read the image in to MATLAB
2 peppers = imread (’ peppers . png ’) ;
% s e l e c t part o f the x , y but s e l e c t a l l o f RGB

4 g a r l i c = peppers (2 3 0 : 3 1 4 , 4 0 7 : 5 1 1 , :) ;
% Show the g a r l i c by advanced imtoo l

6 imtoo l (g a r l i c)

4

Figure 5: The original peppers image shown
by imtool() command.

Figure 6: The cropped garlic from the origi-
nal image

7 Convert an image from color to gray level

Any digital image is composed of pixels spread in two dimensional space. Any one of the pixel
is represented by its x and y positions on the screen. In gray-level image, a pixel has a value
determining how close to black or white color a pixel is. If the pixel values are unsigned integer
8-bits, then value 255 is the whitest and value 0 is blackest. Any value in between is a shade of
gray. On the contrary, a color image is composed of pixels which often have three values, the red
value, the green value, and the blue value. These values indicate how close to the primary color
the pixel is. For example, if a pixel has R = 255 G = 0 B = 0 values then it means the pixel is
entirely red.

There are some image formats which also allow an additional value for each pixel to be stored
in an image. This is the alpha value, which determines the transparency of the pixel. A value
of 255 indicates that the pixel is completely opaque while the 0 value indicates that the pixel is
completely transparent. This fourth alpha channel is crucial in many image applications and visual
effects because it allows dynamics of the background and sense of reality.

For an image to be processed by MATLAB, it is often recommended to convert the pixel value
from unsigned integer to double and map every value from 0-255 to 0-1. This allows the image
matrix to become double so that is image operations and processing is done on it, it can candle
decimal values. At the end of image processing, the image is converted back to 0-255 range so that
the real world displays can handle them.

We can load some images from the MATLAB library and convert a RGB color image into a
gray-level image by typing the following code:

peppers = imread (’ peppers . png ’) ;
2 imtoo l (peppers) ;

pepgray = rgb2gray (peppers) ;

5

4 imtoo l (pepgray) ;

Figure 7: RGB image Figure 8: Gray-level image

8 Doing block processing on an image

Block processing is very powerful technique in image processing as it allows the program to focus
and process a part of an image at a time. If we think of about block processing, it is kind of like
doing convolution in 2 dimensional space. There are two kinds of block processing we can do.

• Non-overlapping block processing

The function we are going to use is blockproc(A, [M,N], FUN). This function takes a matrix A
as an input argument and applies the function FUN on the matrix A with the sample size of M,N.
The size of sample can be thought of as a brush size.

So first let’s make an averager function to apply to a block:

f unc t i on y = averager (x)
2 % This func t i on simply f i n d s a 2 dimens iona l average o f the matrix supp l i ed to i t

y = mean2(x) ;
4 end

Let’s make a function to pass:

% This func t i on takes a block s t r u c tu r e and averages the p i x e l s around i t to produce
the value at the cente r

2 fun = @(b l o c k s t r u c t) averager (b l o c k s t r u c t . data (: , :)) ;

Now, let’s apply this function on the peppers image

6

% Read image in to MATLAB
2 peppers = imread (’ peppers . png ’) ;
% Convert the peppers image in to gray−l e v e l image

4 peppers gray = rgb2gray (peppers) ;
% Show gray−l e v e l image

6 imtoo l (peppers gray) ;
% Apply block p ro c e s s i ng with brush s i z e o f 3 ,3

8 r e su l t image = blockproc (peppers gray , [3 , 3] , fun) ;
% Convert the r e s u l t i n g image from double to unsigned i n t e g e r 8−b i t s

10 r e su l t image = uint8 (r e su l t image) ;
% Show the r e s u l t i n g image in imtoo l window

12 imtoo l (r e su l t image) ;

Figure 9: The original gray-level peppers.png image.
Figure 10: The block processed gray-
level peppers.png image.

Let’s make another function to pass:

% This func t i on takes a matrix and re tu rn s a p i x e l at the cente r o f the matrix
2 f unc t i on y = sampler (x)

%imshow(x) ;
4 [rows , c o l s] = s i z e (x) ;

rowinmiddle = c e i l (rows /2) ;
6 co l i nmidd l e = c e i l (c o l s /2) ;

y = x(rowinmiddle , co l i nmidd l e) ;
8 end

Now, let’s apply this function on the peppers image

% Read image in to MATLAB
2 peppers = imread (’ peppers . png ’) ;
% Convert the peppers image in to gray−l e v e l image

4 peppers gray = rgb2gray (peppers) ;
% Show gray−l e v e l image

6 imtoo l (peppers gray) ;
% Apply block p ro c e s s i ng with brush s i z e o f 3 ,3

8 processed image = blkproc (peppers gray , [3 3] , @sampler) ;
% Show the r e s u l t i n g image in imtoo l window

10 imtoo l (proces sed image) ;

7

Figure 11: The original gray-level peppers.png image.
Figure 12: The block processed gray-
level peppers.png image.

This block processing results in a much sharper result than the averager block process. This is
because the average or mean is kind of low-pass filtering of the image.

Non-overlapping block operation As we can notice from the block processed image, the
resulting image is much smaller and has less pixel information. This is because of the fact that a
single block results in a single pixel on the resulting image. The bigger the sample size, the smaller
is the resulting image.

9 Use overlapping block processing (nlfiltering) on an image

Let’s apply sampler function on the peppers image using non-local filter

% Read image in to MATLAB
2 peppers = imread (’ peppers . png ’) ;
% Convert the peppers image in to gray−l e v e l image

4 peppers gray = rgb2gray (peppers) ;
% Show gray−l e v e l image

6 imtoo l (peppers gray) ;
% Apply non−l o c a l f i l t e r i n g with brush s i z e o f 20 ,20

8 processed image = n l f i l t e r (peppers gray , [2 0 20] , @sampler) ;
% Show the r e s u l t i n g image in imtoo l window

10 imtoo l (u int8 (proces sed image)) ;

8

Figure 13: The original gray-level peppers.png image.
Figure 14: The non-local filter pro-
cessed gray-level peppers.png image.

We can immediately conclude that the images are not changed, that is because the function
sampler returns the pixel at the center back to the filter and the filter places the pixel on the same
position again.

Let’s apply averager function on the peppers image using non-local filter

% Read image in to MATLAB
2 peppers = imread (’ peppers . png ’) ;
% Convert the peppers image in to gray−l e v e l image

4 peppers gray = rgb2gray (peppers) ;
% Show gray−l e v e l image

6 imtoo l (peppers gray) ;
% Apply non−l o c a l f i l t e r i n g with brush s i z e o f 20 ,20

8 processed image = n l f i l t e r (peppers gray , [2 0 20] , @averager) ;
% Show the r e s u l t i n g image in imtoo l window

10 imtoo l (u int8 (proces sed image)) ;

Figure 15: The original gray-level peppers.png image.
Figure 16: The non-local filter pro-
cessed gray-level peppers.png image.

We can immediately conclude that the image is blurred and there are no sudden changes of color.
It is because of the fact that the averager is kind of low-pass filter and allows small changes of colors
to pass while smoothing or lowering the amplitude of the high frequency regions.

10 Low Pass Filtering

9

% Read the cameraman image from the hard dr ive
2 cameraman = imread (’ cameraman . t i f ’) ;
% Def ine the h n f o r the low pass f i l t e r

4 h n low pass = [1/9 1/9 1/9 ; 1/9 1/9 1/9 ; 1/9 1/9 1 / 9] ;
% Apply the low pass f i l t e r on the image and save the r e s u l t in output

6 % array
output = im f i l t e r (cameraman , h n) ;

8 % Show the f i l t e r e d image us ing the imtoo l
imtoo l (output) ;

Figure 17: The original gray-level camera-
man.tif image.

Figure 18: The low pass filter processed cam-
eraman.tif image.

As we can see, the low pass filter destroyed the picture quality and did not allow sudden changes
of pixel values. It kind of averages the pixel value based on the surrounding pixels making the color
transitions smooth.

Now let’s take this image into frequency domain to find out whether the higher frequencies are
really filtered off.

1 % Read the cameraman image from the hard dr ive
cameraman = imread (’ cameraman . t i f ’) ;

3 % crea t e a new f i g u r e
f i g u r e ;

5 % Convert the input image to double f o r easy p ro c e s s i ng
input = im2double (cameraman) ;

7 % Normalize the image f o r f requency domain
img in = f f t s h i f t (input) ;

9 % Take the input image to the f requency domain
F = f f t 2 (img in) ;

11 % Show the g r ay s c a l e v e r s i on o f the f f t
imagesc (100∗ l og (1+abs (f f t s h i f t (F)))) ; colormap (gray) ;

10

13 % Put the t i t l e
t i t l e (’ Or i g i na l image magnitude spectrum ’) ;

15

% Def ine the h n f o r the low pass f i l t e r
17 h n low pass = [1/9 1/9 1/9 ; 1/9 1/9 1/9 ; 1/9 1/9 1 / 9] ;

% Apply the low pass f i l t e r on the image and save the r e s u l t in output
19 % array

output = im f i l t e r (input , h n) ;
21 % Show the f i l t e r e d image us ing the imtoo l

imtoo l (output) ;
23 % Convert the output image to double f o r easy p ro c e s s i ng

output = im2double (output) ;
25 % Normalize the image f o r f requency domain

out img = f f t s h i f t (output) ;
27 % Take the output image to the f requency domain

G = f f t 2 (out img) ;
29 % crea t e a new f i g u r e

f i g u r e ;
31 % Show the g r ay s c a l e v e r s i on o f the f f t

imagesc (100∗ l og (1+abs (f f t s h i f t (G)))) ; colormap (gray) ;
33 % Put the t i t l e

t i t l e (’Low pass f i l t e r e d image magnitude spectrum ’) ;

Figure 19: 2D frequency domain plot of the
original image.

Figure 20: 2D frequency domain plot of the
low pass filtered image.

The further away we go from the center, the frequency gets higher. Figure 20 clearly gets darker
on as we move away from the center. This refers to the fact that higher frequency components have
being filtered out/removed.

11

11 Sobel and Prewit operators for high-pass filtering

11.1 Sobel Filter

Sobel filter is a very popular vertical edge pass, horizontal edge attenuate filter. It is pre-defined
in MATLAB. Matlab returnsa sobel matrix filter by typing the command fspecial(′sobel′)

h =

 1 2 1
0 0 0
−1 −2 −1


% Read the cameraman image from the hard dr ive

2 cameraman = imread (’ cameraman . t i f ’) ;
% c r ea t e a new f i g u r e

4 f i g u r e ;
% Convert the input image to double f o r easy p ro c e s s i ng

6 input = im2double (cameraman) ;
% Normalize the image f o r f requency domain

8 img in = f f t s h i f t (input) ;
% Take the input image to the f requency domain

10 F = f f t 2 (img in) ;
% Show the g r ay s c a l e v e r s i on o f the f f t

12 imagesc (100∗ l og (1+abs (f f t s h i f t (F)))) ; colormap (gray) ;
% Put the t i t l e

14 t i t l e (’ Or i g i na l image magnitude spectrum ’) ;

16 % Def ine the h n f o r the low pass f i l t e r
h n sobe l = f s p e c i a l (’ s obe l ’) ;

18 % Apply the low pass f i l t e r on the image and save the r e s u l t in output array
output = im f i l t e r (input , h n sobe l) ;

20 % Show the f i l t e r e d image us ing the imtoo l
imtoo l (output) ;

22 % Convert the output image to double f o r easy p ro c e s s i ng
output = im2double (output) ;

24 % Normalize the image f o r f requency domain
out img = f f t s h i f t (output) ;

26 % Take the output image to the f requency domain
G = f f t 2 (out img) ;

28 % crea t e a new f i g u r e
f i g u r e ;

30 % Show the g r ay s c a l e v e r s i on o f the f f t
imagesc (100∗ l og (1+abs (f f t s h i f t (G)))) ; colormap (gray) ;

32 % Put the t i t l e
t i t l e (’ Sobel f i l t e r e d image magnitude spectrum ’) ;

12

Figure 21: 2D frequency domain plot of the
sobel filtered image.

Figure 22: Sobel filtered image. Horizontal
edges are ignored and vertical edges are am-
plified to appear more bright. This filter is
usually used in edge detection algorithms as
we can see it has detected the man’s outline
and mountain edges.

It can clearly be seen that the frequency with horizontal phase were attenuated and the vertical
frequencies were amplified.

11.2 Prewitt Filter

Prewitt filter is a very popular vertical edge pass, horizontal edge attenuate filter. It is pre-defined
in MATLAB. Matlab returnsa sobel matrix filter by typing the command fspecial(′prewitt′)

h =

 1 1 1
0 0 0
−1 −1 −1


1 % Read the cameraman image from the hard dr ive

cameraman = imread (’ cameraman . t i f ’) ;
3 % crea t e a new f i g u r e

f i g u r e ;
5 % Convert the input image to double f o r easy p ro c e s s i ng

input = im2double (cameraman) ;
7 % Normalize the image f o r f requency domain

img in = f f t s h i f t (input) ;
9 % Take the input image to the f requency domain
F = f f t 2 (img in) ;

11 % Show the g r ay s c a l e v e r s i on o f the f f t
imagesc (100∗ l og (1+abs (f f t s h i f t (F)))) ; colormap (gray) ;

13 % Put the t i t l e
t i t l e (’ Or i g i na l image magnitude spectrum ’) ;

15

% Def ine the h n f o r the low pass f i l t e r
17 h n prew i t t = f s p e c i a l (’ p rew i t t ’) ;

% Apply the prewi t t f i l t e r on the image and save the r e s u l t in output array
19 output = im f i l t e r (input , h n prew i t t) ;

% Show the f i l t e r e d image us ing the imtoo l

13

21 imtoo l (output) ;
% Convert the output image to double f o r easy p ro c e s s i ng

23 output = im2double (output) ;
% Normalize the image f o r f requency domain

25 out img = f f t s h i f t (output) ;
% Take the output image to the f requency domain

27 G = f f t 2 (out img) ;
% c r ea t e a new f i g u r e

29 f i g u r e ;
% Show the g r ay s c a l e v e r s i on o f the f f t

31 imagesc (100∗ l og (1+abs (f f t s h i f t (G)))) ; colormap (gray) ;
% Put the t i t l e

33 t i t l e (’ Prewitt f i l t e r e d image magnitude spectrum ’) ;

Figure 23: 2D frequency domain plot of the
prewitt filtered image.

Figure 24: Prewitt filtered image. Horizon-
tal edges are ignored. This filter is usually
used in edge detection algorithms as we can
see it has detected the man’s outline and
mountain edges.

It can clearly be seen that the frequency with horizontal phase were attenuated and the vertical
frequencies were amplified.

Difference between the Sobel and Prewitt filters Prewitt filter is a basic version of Sobel
filter where the coefficients are not modified. Whereas, in sobel filter, the coefficients can be mod-
ified to detect more or less edges.

h1 =

 1 1 1
0 0 0
−1 −1 −1

 h2 =

 1 2 1
0 0 0
−1 −2 −1

 h3 =

 1 5 1
0 0 0
−1 −5 −1

 h4 =

 1 0.5 1
0 0 0
−1 −0.5 −1



14

12 Canny Edge detection

Canny edge detection works on multi-stage algorithm to come up with all the edges in the
image. The intensity of the filter can be controlled with a parameter. Matlab has a function
output = edge(input,′ canny′); which applies canny edge detection algorithm to an image and
returns a edge image.

1 % Read the cameraman image from the hard dr ive
cameraman = imread (’ cameraman . t i f ’) ;

3 % crea t e a new f i g u r e
f i g u r e ;

5 % Convert the input image to double f o r easy p ro c e s s i ng
input = im2double (cameraman) ;

7 % Normalize the image f o r f requency domain
img in = f f t s h i f t (input) ;

9 % Take the input image to the f requency domain
F = f f t 2 (img in) ;

11 % Show the g r ay s c a l e v e r s i on o f the f f t
imagesc (100∗ l og (1+abs (f f t s h i f t (F)))) ; colormap (gray) ;

13 % Put the t i t l e
t i t l e (’ Or i g i na l image magnitude spectrum ’) ;

15

output = edge (input , ’ canny ’) ;
17 % Show the f i l t e r e d image us ing the imtoo l

imtoo l (output) ;
19 % Convert the output image to double f o r easy p ro c e s s i ng

output = im2double (output) ;
21 % Normalize the image f o r f requency domain

out img = f f t s h i f t (output) ;
23 % Take the output image to the f requency domain

G = f f t 2 (out img) ;
25 % crea t e a new f i g u r e

f i g u r e ;
27 % Show the g r ay s c a l e v e r s i on o f the f f t

imagesc (100∗ l og (1+abs (f f t s h i f t (G)))) ; colormap (gray) ;
29 % Put the t i t l e

t i t l e (’Canny edge s e t e c t i o n image magnitude spectrum ’) ;

15

Figure 25: 2D frequency domain plot of the
canny edge detection image. As expected all
the higher frequency components(edges) are
amplified.

Figure 26: Output image from canny edge
detection algorithm. Almost all the edges
are detected.

Difference between the Canny edge detection and Sobel edge detection Sobel edge filter
focuses on a particular frequency phase while the canny edge detection first generates the frequency
phase map and applies corresponding phase shifted filter to the image. Sobel filter will not be able
to detect edges for which it is not designed for while canny edge detection will be able to detect
edges regardless of the direction of frequency.

13 Gray-Level thresholding with morphological operations

Object detection is a huge field in image processing. We will practice one of the algorithm to
detect the image. This algorithm converts the image into logical values of either a completely black
pixel or a completely white pixel. Then this image is inverted because the object we are trying to
detect is black but we want it as white and the background to be black. The person is then filled
with the disk of size we specify. This can also be called as brush size. Once the image is filled, there
is a slight problem. There are multiple regions where the brush has filled with white pixels. Now
how can we choose one single area and deleted others. This is done by fetching the properties for
each of the region and calculating the area. If the area is larger than our minimum requirement,
we allow the region to appear on the screen.

f unc t i on y = SegmentLargeBlobs (f i l ename , p)
2 % Reads the passed f i l e from the given path

x = imread (f i l ename) ;
4 % Converts the image in to l o g i c a l va lue type . E i ther complete ly black or complete ly

white
b = im2bw(x) ;

6 % Takes the i nv e r s e o f the image to get the man white and the background
% black

8 b = 1−b ;
% Creates a matrix which has ones in the shape de f ined and s i z e

16

10 se = s t r e l (’ d i sk ’ , 5) ;
% Tr i e s to f i t maximum number o f se matr i ce s i n s i d e the cameraman

12 w = imopen (b , se) ;
% get number o f b lobs

14 r = reg ionprops (bwlabel (w)) ;
y = w;

16 % Get number o f rows and columns o f the matrix
[rows , c o l s] = s i z e (y) ;

18 % Calcu la t e the area o f the imopen
S = rows∗ c o l s ;

20 % Repeat f o r each blob reg i on
f o r i = 1 : l ength (r) ,

22 i f r (i) . Area/S < p ,
% Draw a bounding box f o r blob reg ionwhich s a t i s f i e s our area requirement

24 BB = r (i) . BoundingBox ;
TopLeftX = round (BB(1)) ;

26 TopLeftY = round (BB(2)) ;
Width = round (BB(3)) ;

28 Height = round (BB(4)) ;
y (TopLeftY : TopLeftY+Height , TopLeftX : TopLeftX+Width) = 0 ;

30 end
end

Figure 27: The figure shows the result pro-
duced when the parameter passed is 0.201.
The following is the command passed.

1 imtoo l (SegmentLargeBlobs (’ cameraman .
t i f ’ , 0 . 2 01)) ;

Figure 28: The figure shows the result pro-
duced when the parameter passed is 0.02.
The following is the command passed.

1 imtoo l (SegmentLargeBlobs (’ cameraman .
t i f ’ , 0 . 0 2)) ;

13.1 Final Steps

The final steps to extract the man from the image is to multiply the mask obtained from the
image processing with the original image.

1 Get Blobby Image = SegmentLargeBlobs (’ cameraman . t i f ’ , 0 . 2 01) ;
cameraman or ig ina l = imread (’ cameraman . t i f ’) ;

17

3 cameraman double = im2double (cameraman or ig ina l) ;
Get Blobby Image = Get Blobby Image (1 : 2 56 , 1 : 2 5 6)

5 Result ing Image = Get Blobby Image .∗ cameraman double ;
imtoo l (Result ing Image+(1−Get Blobby Image)) ;

Figure 29: The final man extracted from the image with the background made white.

References

[1] Mathworks. Image Processing Toolbox . [Electronic]. Available: http://www.mathworks.com/
products/datasheets/pdf/image-processing-toolbox.pdf [2 June 2014].

[2] Dr.Tim Morris. Image Processing with MATLAB. Page 2. Available: http://studentnet.

cs.manchester.ac.uk/ugt/COMP27112/doc/matlab.pdf [2 June 2014].

[3] Huidan Cao & Yuming Shen. Application of MATLAB image processing technology in sewage
monitoring system [Electronic]. Available: http://ieeexplore.ieee.org/stamp/stamp.

jsp?tp=&arnumber=5274144&isnumber=5273983 [2 June 2013].

18

