AL

otbig il de ol

I:\.BU DHABI UNIVERSITY

ABU DHABI UNIVERSITY

CEN 464 - DIGITAL SIGNAL PROCESSING

Project II Report
Digital Signal Processing of Audio Signal

Authors: Supervisor:
Muhammad Obaidullah 1030313 Dr. Mohammed Assad Ghazal

Section 1

June 8, 2014

Contents

(1 _Introduction|

[2 List of equipment used|

[3 Project Circuit|

[4 Proposed PCB|

5 Low Pass Filter|

6 1g ass Filter

[6.1 Filter Design|

(8 Band Reject Filter|

(8.1 Filter Design|

9.1 Maximum Sampling Frequency|

9.2 ADC Value Fetching Frequency]|

9.3 Proofd
9.3.1 20Hzf

(10 Conclusion|

10
10
11

12
12
12
14
15
15

15

Abstract

In this project we designed a digital Finite Impulse Response Filter using AtMega 328. The
project’s aim was to get familiarized with digital signal processing by using the C language
programming. We began by first designing the filter using either MATLAB or online filter
design tool.

1 Introduction

Human ear is a very astonishing and complex organ. The brain even makes the system more
complex by combining information from two years in a perplexing neural network. Although it
might seem very natural and hidden to us but our brain does very complex signal processing
everyday, every second, every moment on the sounds heard by both the ears.

For example, On a noisy road, you can easily hear the friend sitting beside you because your
brain categorizes the road noise as background and amplifies the frequencies which are coming from
your friend’s voice. Thus, brain is capable of selective filtering by removing he background noise.
This kind of filtering is based on band pass filter which signal processing engineers use nowadays.
Several other examples might be given to prove the fact that human brain is an extremely complex
and advanced audio signal processor.

Some decades back, before the introduction of transistors, analog devices were quite dominant in
the market and all the electronics were using analog filters. But now we live in a digital age where
everything is stored, processed and provided in digital form. This transistor driven transition from
analog to digital domain has lead scientist and engineers to design the same filters which they used
to design using analog devices to be designed now by using digital devices like micro-processors,
FPGAs etc.

fs

Sl=

[~ ||

DAFX f=y(n) -] DAC fr=y(t)==p-O O)

Figure 1: The figure shows how a typical digital signal processing is done. The input signal from
microphone is first converted from analog to digital and then fed into the micro-processor which
multiplies the input by the filter coefficients and then the DAC converts the digital signal back to
analog for the speaker to output. [3]

2 List of equipment used

e A Computer.

e MATLAB.

e MATLAB Filter Design Toolbox.
e AtMega 328.

e Arduino Board.

e USB B Cable.

e Function Generator.
e Oscilloscope.

e Jumper Wires.

e Breadboard.

e Microphone.

e Speaker.

e Internet Connection.

e TFilter Website.

3 Project Circuit

===
=== _‘ PWM Signal
e A
i, i, g
B
o
===
Amplifier
Speaker

Arduino AtMega 328

Amplifier Microphone

Figure 2: The figure shows how the microphone can be connected to the micro-controller to read
the audio signals and provide the output to the speaker using PWM signal.

BLUETOOTH OR USB

TALK BTN

ISTATUS INDICATION

H = Bt MICROPHONE
It = S \
L) SOk
—_ B
| 7l
I

SPEAKER

Figure 3: The figure shows the circuit diagram with the amplifier circuit at both, the input micro-
phone and the output speaker.

4 Proposed PCB

Figure 4: The X-Ray vision of the printed circuit board of the audio processor.

5 Low Pass Filter

A low pass filter allows lower frequency components of the signal to pass while attenuating the higher
frequencies. In audio signals, the low frequency sounds, for example a roar will pass unaffected
and the higher frequency components of the sound signal for example the cry or shout will pass be

completely attenuated.
5.1 Filter Design

Gain vs. Frequency Impulse Response Source Code Feature Request Enterprise IR Design

ripple bounds
desired gain
0 M actual gain
-50
-100
-125
160
0 100 00 00 0o 00 00 00 800 500 1000
? jan' i
@ add passband @ add stopband | predefined ¥ sampling freq. 2000 Hz So you want more? Check out Towegian's website for
- « FIR & I1R filter design and analysis, - =
TG oIS o |yt desgalgorths,
IHz 400 Hz 1 5 4B 29848 {1 actual #aps 23 = advanced filter tweaking tools, H : =
» FFT spectral analysis, H — |} i i
600 Hz | 1000 Hz 0 5008 | -82854B |1 DESIGN FILTER T Do e A | M — ‘ e
and even more... GIAN INTERNATIONAL Jeriowsrtbou D59 ™

Figure 5: The figure shows the magnitude response of the 39 taps low pass filter to filter the
frequencies from 500Hz to 1000Hz. The passband ripple was set to 5dB and stopband attenuation

was set to -80dB.

5.2 Results

Figure 6: The figure shows what happens when 20Hz is passed through the input. It is allowed to
pass since 40Hz is in the pass band. The red signal is the input and the blue is output.

||||| AT e T T AT T ““‘I|HIHW|||[MMI||IIMH\\\W|m\
i

e

Figure 8: The figure shows what happens when 870Hz is passed through the input. The red signal
is the input and the blue is output.

6 High Pass Filter

A high pass filter allows higher frequency components of the signal to pass while attenuating the
lower frequencies. In audio signals, the low frequency sounds, for example a roar will be completely
attenuated and the higher frequency components of the sound signal for example the cry or shout
will pass unaffected.

6.1 Filter Design

Gain vs. Frequency Impulse Response Source Code Feature Request Enterprise IR Design

20
ripple bounds
desired gain

0 Ml actual gain - o

-20

a0

o 100 200 200 400 500 800 700 500 200 1000

So you want more? Check out Iowegian's website for

['CI-:J add passband @ add stopband | Ipredefined ¥ | sampling freq. | 2000 Hz
= « FIR & IIR filter design and analysis, e
S T o e SEEI ——m
THz £00 Hz 0 80d6 | -B072dB |11 actual #aps |~ 41 + advanced filter tweaking tools, H IF —
- = + FFT spectral analysis, Hd === | | i
S00Hz | 1000 Hz 1 sda 383d [D ED e e R Hle — gl

and even more... ‘|mmnm me-mm
Figure 9: The figure shows the magnitude response of the 41 taps high pass filter to filter the

frequencies from 3Hz to 400Hz. The passband ripple was set to 5dB and stopband attenuation was
set to -80dB.

6.2 Results

VAL LAR AR AL
AT R VUL

h[w[hr\l||I|IHI|I||H}||,H\H}mllWl[ltlllll\\ﬁlt'i|!H|||H1|!||H}|’||\\‘|’H,H]|lllMl}|’H|,H}|IH,H|U||{\IMl,\HJIJ\iIHJJlﬂHﬁ[\lll ALY IIHWIII\I'U‘IIM

Figure 11: The figure shows what happens when 550Hz is passed through the input. The red signal
is the input and the blue is output.

Figure 12: The figure shows what happens when 950Hz is passed through the input. The red signal
is the input and the blue is output.

7 Band Pass Filter

A band pass filter allows certain selected frequency range (bandwidth) to pass while attenuating
the other frequency components. This filter is extremely useful for removing noise and tuning into
a selected frequency band from multiplexed channel signals. This type of filter is often seen to be
used right after the antenna. This removes the Gaussian white noise components which have been
added frequencies outside the band of operation. Also it selects the band of operation and does
not allow other frequency channels to pass in to the output.

7.1 Filter Design

Gain vs. Frequency Impulse Response Source Code

Feature Request Enterprise IR Design

ripple bounds
desired gain
M actual gain

@ add passband @ add stopband | !predefined ¥ sampling freq. 3200 Hz

800 1000 1200 1400 1600

So you want more? Check out ITowegian's website for
» FIR & IIR filter design and analysis,

[fom to gan ripplefatt actrpl desrESHEe momm + many filter design algorithms, et [2 BT
3Hz | 400Hz 0 5008 | 813408 [0 actual#taps 29 + advanced filter tweaking tools, : | i
= FFT spectral analysis, : —— I |
5 ’ | K P
800Kz | 1000Hz 1 sas | 28848 (1 T - Saving loating andimporting Aitere, | -l] [
1200Hz | 1600 Hz 0 50dB | 81348 | [T D IR R G oL | soicsertont s

Figure 13: The figure shows the magnitude response of the 39 taps band pass filter to pass the
frequencies from 600Hz to 1000Hz. The passband ripple was set to 5dB and stopband attenuation
was set to -80dB.

7.2 Results

Figure 14: The figure shows what happens when 200Hz is passed through the input. It is allowed
to pass since 40Hz is in the pass band. The red signal is the input and the blue is output.

T e —————

Figure 15: The figure shows what happens when 650Hz is passed through the input. The red signal
is the input and the blue is output.

Figure 16: The figure shows what happens when 1600Hz is passed through the input. The red
signal is the input and the blue is output.

8 Band Reject Filter

A band reject filter rejects a certain band of frequencies and allows all the other frequency compo-
nents of signal pass through. This kind of filters are used when the frequency of unwanted signal is
precisely known and is to be attenuated for producing excellent output results. For example some
very advanced voice amplifiers have band reject filters to reject the signal frequencies which are
feed back into the microphone because the microphone was too near the speaker. It is the exact
inverse of the Band-pass filter.

8.1 Filter Design

10

Gain vs. Frequency Impulse Response Source Code Feature Request Enterprise IR Design

20

ripple bounds
desired gain
0 M actual gain
-20
g
-80
-80
-100
120
o 200 400 &00 300 1000 1200 1400 1800
»
& - .
@ add passband @ add stopband [predefined ¥ e So you want more? Check out lowegian's website for
« FIR & IR filter design and analysis, — e
desired #taps| minimum « many filter design algorithms, I[-:- - | RS
0Hz 400 Hz 1 5dB 182448 (I actual #aps 17 « advanced filter tweaking tools, H i L
» FFT spectral analysis, : mey i
600Hz | 1000 Hz 0 8008 | 69.594B [0 DESIGN FILTER e R T e R I o] J— hocon. {
1200 Hz | 1600 Hz 1 5dB 182448 {1 and even more... -iAN INTERNATIONAL Jeriossrtboneaise™

Figure 17: The figure shows the magnitude response of the 17 taps band reject filter to reject the
frequencies from 600Hz to 1000Hz. The passband ripple was set to 5dB and stopband attenuation
was set to -80dB.

8.2 Results

Ry

Figure 18: The figure shows what happens when 40Hz is passed through the input. It is allowed
to pass since 40Hz is in the pass band. The red signal is the input and the blue is output.

11

\‘.',',’.\‘.'.‘.'[’,V,’.‘.‘.‘.‘.’.’,’wW*,’J,’J,',’,’.’.’,’,’,’.’.‘.’,’,','.’,’J.’.’.’.\',’.’,',',',’.\'J,’,’.’,',’.’.',’,‘ﬂ.‘.\’.‘.w[’,’,’J.’.‘.‘.'.‘.'.’,’,’.’,’,’,’.’l‘,’.‘,’,’,*ﬁ,‘,’.’.ﬂﬂ“‘,’,’ﬂ\}L,‘.'“J,’,’.’.’,’,",’.’,’,’h‘.ﬂ'.‘.‘|‘J."‘.‘.',','[',’,’MW.'.‘.’,'.’.’,’,’,'.’.’,’,’L

Figure 19: The figure shows what happens when 850Hz is passed through the input. The red signal
is the input and the blue is output.

AR

Figure 20: The figure shows what happens when 850Hz is passed through the input. The red signal
is the input and the blue is output.

9 Problems & Discussions

9.1 Maximum Sampling Frequency

The ADC clock is derived from the system clock which in the case of AtMega 328 using the
Arduino bootloader is about 16 Mhz. The system clock is prescaled by 128 prescaler. The following
equation finds out the sampling frequency of the ADC.

fsystem 16 x 106

= = =12 = 125KH 1
fapc 198 198 5,000 5 z (1)

According to NyquistShannon sampling theorem, sampling frequency should be twice the max-
imum frequency of the input. Theoretically, the micro-controller should be then able to process
signals of about %Khz = 62.5Khz. In our project the input is the human voice which has 20 Hz to
20,000 Hz bandwidth. In order to digitize the human voice, we need a sampler which takes samples
twice this bandwidth.

Fryquist = 2 x 20Khz = 40K Hz < 125K hz 2)

The AtMega 328 bootloaded with Arduino takes samples at 125 Khz which is way above the
Nyquist-Shannon criterion. The samples from the ADC pin 0 are taken 125,000 times in a second
and stored in the register for the programmer to access. So the maximum rate at which we can
sample using this AtMega 328 is 125Khz.

9.2 ADC Value Fetching Frequency

The AtMega 328 we are using is clocked at 16 Mhz and at maximum speed, it processes 16 Million
lines of code in a second provided that the line of code does not contain arithmetic operations. In
case of performing arithmetic operations, it takes several clock cycles to come up with a result for
that particular line of code. All of these complications reduce the rate at which the new input
sample is taken from the ADC register.

12

Let’s assume one case and perform some calculations. The low pass filter code we wrote is of 64
lines, so the maximum ADC value fetching frequency will be:

16 x 10°

o = 200,000 = 250K H> (3)

fADC’fetch =

Therefore, at maximum rate, without any arithmetic calculations, AtMega 328 is capable of
fetching input 250,000 times in a second which is much higher than the rate ADC is sampled. So
the actual ADC sampling rate will in fact remain 125Khz.

byte int longint double

sy
[}

microseconds

L T e L 1 Y = N L =

Figure 21: The figure shows how many microseconds an AtMega 328 takes to arithmetically process
different data types. The double of size 4 arithmetic operation takes about 9.2 us, a long integer
takes about 3.8 us, a integer operation about 0.9 us and a byte less than 0.4 ps. [1]

In our arduino code, we are performing many double operations which is slowing down the
processor and the sample fetching rate from ADC. Lets take the example of Low pass filter with 39
taps and calculate how much time does it take to calculate the output and take the next sample.

toutput = 9-2 x 1078 x 39 = 3.588 x 10™*s ~ 0.36ms (4)

If the arduino is taking 0.36 ms to calculate one output, combined this with the time it takes to
process all the lines of code, we can come up with the total time it take for the arduino to produce
the output and the maximum processing frequency.

1
— -3 — —4 ~ 0.
totat = 0.36 x 107 4 o — 5 = 3.68 % 107" ~ 0.37ms (5)
1
fADCprocessing = m =2702.THz ~ 2.7TKhz (6)

13

If our device is capable of sampling at rate of 2.7 Khz, then the input frequency should be half
of this in order to satisfy nyquist rate.
2.7 x 103

Forocessavte = ——5—— = 1350H2 ~ 1.3K H> (7)

Thus, arduino can only process signals from 0-1.3 Khz frequencies. For higher frequencies, a high
speed DSP chip is required such as FPGA.

9.3 Proof:

To support the mathematical findings of the digital signal processing speed of the AtMega, I
designed a Low pass filter with pass-band from 3Hz - 1.5KHz and stop-band from 2KHz to 3.3Khz.
After this I input range of frequencies to the ADC pin. Below are my results.

‘Gain vs. Frequency Impulse Response Source Code Feature Request Enterprise IR Design
ripple bounds
desired gain
. M actual gain
-0
-100
-12
150 h
9 P :
@ add passband @ add stopband | jpredefined T e So you want more? Check out Towegian's website for
: « FIR & TIR filter design and analysis, —— L
DT TS oyt designagorithms, |
I Hz 1500 Hz 1 5dB 308d8 |i actual #aps 29 « advanced filter tweaking tools, : 3 T
+ FFT spectral analysis, - F— ip——
2000 Hz | 3300 Hz 0 8048 825748 (1 DESIGN FILTER S e A S =t — e
and even more... -fl:IiAN INTERNATIONAL Sevious ddous 0™

Figure 22: The figure shows a 29 taps low pass filter design with -80 dB attenuation in the stop
band. As we can see that the filter is designed to attenuate the signals from 2KHz to 3.3Khz.

14

9.3.1 20Hz:

O

Figure 23: The figure shows what happens when a low frequency 20Hz is passed to the ADC
of AtMega. The output is delayed a bit but it is constant throughout the time. It is also not
attenuated as expected in the filter design.

9.3.2 at 5KHz:

unwh “H ‘m"w‘. i I‘ 'M‘ i w'"“’lm'“ i ‘l“‘l‘”“l‘“‘ l'w l"'ﬂ\" it M ‘HM“" "\\ i " I ‘.JM\M ‘I ‘\‘

Figure 24: The figure shows what happens when a very high frequency, 5KHz, is passed to the ADC
of AtMega. Forget about the output, input even isn’t correctly captured because of slow capture
rate. Since it is a Low pass filter and 5KHz is very high frequency, it is supposed to attenuate this
frequency. But AtMega is allowing it to pass through.

10 Conclusion

All in all, this project successfully implemented the low pass, high pass, band reject, and band
pass filter on an AtMega microprocessor clocked at 16 Mhz and boot loaded with Arduino boot
loader. Additionally, we found out experimentally that is the input frequency increases higher than
about 1200 Hz, the AtMega becomes kind of a all-pass filter and allows all frequencies to pass.

Moreover, after the confusing discovery of unpredictable response of AtMega to high frequencies,
a theoretical and mathematical explanation was proposed in the project. Theoretically, we found
that the microprocessor we are currently using can process signals of upto 1.3 Khz.

References

[1] Arduino Blog, Speed of floating point operations — test results, http://forum.arduino.cc/
index.php/topic,40901.0.html, 07 April 2008 [1 June 2014].

[2] The Scientist and Engineer’s Guide to Digital Signal Processing. Audio Processing, http://
www.analog.com/static/imported-files/tech_docs/dsp_book_Ch22.pdf, [1 June 2014].

[3] Cardiff University. Basic Digital Audio Signal Processing, http://www.cs.cf.ac.uk/Dave/
CM0268/PDF/07_CM0268_DSP . pdf, [2 June 2014].

15

http://forum.arduino.cc/index.php/topic,40901.0.html
http://forum.arduino.cc/index.php/topic,40901.0.html
http://www.analog.com/static/imported-files/tech_docs/dsp_book_Ch22.pdf
http://www.analog.com/static/imported-files/tech_docs/dsp_book_Ch22.pdf
http://www.cs.cf.ac.uk/Dave/CM0268/PDF/07_CM0268_DSP.pdf
http://www.cs.cf.ac.uk/Dave/CM0268/PDF/07_CM0268_DSP.pdf

	Introduction
	List of equipment used
	Project Circuit
	Proposed PCB
	Low Pass Filter
	Filter Design
	Results

	High Pass Filter
	Filter Design
	Results

	Band Pass Filter
	Filter Design
	Results

	Band Reject Filter
	Filter Design
	Results

	Problems & Discussions
	Maximum Sampling Frequency
	ADC Value Fetching Frequency
	Proof:
	20Hz:
	at 5KHz:

	Conclusion

