

Abu Dhabi University

EEN 360 - Electronic Devices and Circuits II

Lab Report 1 BJT Amplifiers Frequency Response

Author: Muhammad Obaidullah 1030313 Bilal Arshad 1011929

Supervisor: Dr. Riad Kanan

Section 1

May 12, 2013

Contents

1	Introduction	2
2	Experiment Set-up	2
3	List of Equipment used	3
4	Procedure	4
5	Results and Discussions	5
6	Conclusion	10
7	Team Dynamics	10

Abstract

The purpose of this lab was to educate us in how to obtain frequency response of a BJT amplifier, find out mid-band gain, lower cut-off frequency, upper cut-off frequency an plotting the results on Semi-log paper.

1 Introduction

An electronic amplifier is a device which increases the power of the signal by keeping the shape(contour) of the signal same but increasing the amplitude. In other words, it is a power modulator.

The amplifier we are going to use in this lab is a BJT amplifier which essentially means that the input impedance of this amplifier is not entirely infinite but its huge. Therefore a small amount of current passes through the input and the energy is lost. The ideal amplifier is the amplifier which has infinite input impedance and infinite Open loop gain. The two configurations of the amplifiers are:-

- Open Loop Configuration Open loop configuration is when the output of the amplifier is in no way feed back to the input of the same amplifier.
- Closed Loop Configuration Closed loop configuration is when some amount of current from the output is feed back to the input of the amplifier. This is done to stabilize the amplifier and reduce its gain from near infinite to something manageable.

2 Experiment Set-up

We connect the circuit as shown in the figure:-

Figure 1: This is how we set p the circuit

3 List of Equipment used

- Breadboard.
- Oscilloscope.
- Wires.
- Resistors and Capacitors.
- Function Generator.
- Function generator cables.
- Crocodile Clip Cables.
- BJT NPN Transistor BC109.

Figure 1: List of equipment

Figure 2: These are the things that are needed for the experiment to be performed

4 Procedure

- Connect the provided BJT transistor BC109 in common emitter configuration.
- Connect the oscilloscope and function generator to the circuit as shown in the figure
- Apply a sinusoidal 0.5 Vp-p at 5 Hz to the amplifier's input and observe the output.
- Keep the input voltage constant and change your input frequency according to the values provided in the table and note down the output.
- Note the output signal's peak to peak voltage and write in the provided table.
- Calculate the gain of the amplifier for each tested case.
- Use the values in the table and plot a semi-log plot of the frequency response of the amplifier.

Figure 3: oscilloscope's Channel 1 is connected to amplifier's input and the function generator's 50 output. oscilloscope's Channel 2 connected to amplifier's output.

5 Results and Discussions

At the end of the lab we got the following results:-

Input Frequency	Gain	Gain in dB	
5	0.3280	-9.6825	
8	0.5040	-5.9514	
12.5	0.7120	-2.9504	
20	0.9120	-0.8001	
32	1.0840	0.7006	
50	1.3120	2.3587	
80	1.3760	2.7724	
1256	1.4080	2.9721	
200	1.5200	3.6369	
315	1.5200	3.6369	
500	1.5200	3.6369	
792	1.5200	3.6369	
1.3K	1.5200	3.6369	
2K	1.5200	3.6369	
3.1K	1.5200	3.6369 _т	he following is the MATLAB code we write for gen-
5K	1.5200	3.6369	he following is the MATLAND code we write for gen-
8K	1.5200	3.6369	
13K	1.5200	3.6369	
20K	1.5200	3.6369	
32K	1.5200	3.6369	
50K	1.5200	3.6369	
79K	1.5200	3.6369	
125K	1.4400	3.1672	
199K	1.3200	2.4115	
315K	1.0800	0.6685	
500K	00K 0.8800 -1.1103	-1.1103	
792K	0.6800	-3.3498	
1.2M	0.4800	-6.3752	
2M	0.3600	-8.8739	
3.1M	0.2800	-11.0568	
5M	0.2400	-12.3958	
5.111 5M	0.2800 0.2400	-12.3958	

erating the Bode Plot of the results

Ę

```
frequencies = \begin{bmatrix} 5 & 8 & 12.5 & 20 & 32 & 50 & 80 & 125.6 & 200 & 315 & 500 & 792 & 1300 & 2000 & 3100 & 5000 & 8000 \end{bmatrix}
                           13000 \ 20000 \ 32000 \ 50000 \ 79000 \ 125000 \ 199000 \ 315000 \ 500000 \ 792000 \ 1200000 \ 2000000
                           3100000 5000000];
         voltageout = [1.64 \ 2.52 \ 3.56 \ 4.56 \ 5.42 \ 6.56 \ 6.88 \ 7.04 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 7.6 \ 
                           7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.2 6.6 5.4 4.4 3.4 2.4 1.8 1.4 1.2];
       vpeakarray = 5*ones(1,31);
3
        Gain = voltageout./vpeakarray;
       GainindB = 20 * \log 10 (Gain);
        FrequencyindB = 10 * \log 10 (frequencies);
        plot (FrequencyindB, GainindB);
7
        Xlabel('Frequency in dB');
Ylabel('Gain in dB');
```

Thus, we get the following graph in the MATLAB. The following are the pictures of the experiment

Figure 4: As we can see from the graph that the as the logarithmic scale of frequencies increases, the Gain becomes a near constant in the band-width called mid-band.

Figure 5: The Gain is there as the blue wave is Figure 6: Setting the frequency from the frehigher in amplitude than the yellow (input) one quency generator as the input to the circuit

Figure 7: The circuit on the breadboard

Figure 8: The Gain has decreased very much as the frequency is very less

6 Conclusion

- From our results we conclude that the gain is less when the frequency is too low because the more less the frequency is, more it gets closer to DC and we know that at DC frequency, the capacitor charges to full and open circuits the wire.
- As the frequency increases, the internal capacitive effects between the doped areas begin to take effect and thus cause the gain falloff at high frequencies.
- A ideal amplifier has infinite open loop gain and infinite input resistance.
- Diode can be used to protect the highly sensitive components of a circuit where a circuit cannot afford the reverse current to flow in it. In this case a protection diode is used in parallel to the whole circuit. This diode turns ON and starts to conduct (short-circuit) when reverse polarity of V is applied and does not conduct when correct polarity of V is applied.

-	T	р	•
1	Team	Dvn	mics
•	Louin	- $ -$	

Part and Member	Weight Grade	Muhammad Obaidullah	Bilal Arshad
Abstract	10%	50%	50%
Introduction	15%	50%	50%
Procedure Part 1	15%	50%	50%
Procedure Part 2	15%	50%	50%
Results Part 1	15%	50%	50%
Results Part 2	15%	50%	50%
Conclusion	15%	50%	50%
Total	100%	50%	50%