

Electronic Devices & Circuits II MUHAMMAD OBAIDULLAH

OUTLINE

Chapter – 11: Feedback

- General Feedback Structure
- Feedback Topologies

Chapter – 12: Power Amplifiers

- Understanding Amplifiers
- Different Classes of Amplifiers

Chapter – 13: Waveform Generators

- Phase Shift Oscillators
- Comparators
- Multivibrators

CHAPTER 11 FEEDBACK

BASIC FEEDBACK

CALCULATING GAINS

Open Loop Gain = A Closed Loop Gain = β Feedback Loop Gain = Af = $\frac{Vout}{Vin} = \frac{A}{1+A\beta}$

 $Vout = A(Vin - Vout.\beta)$ $Vout = A.Vin - A\beta.Vout$ $Vout + A\beta.Vout = A.Vin$ $Vout(1 + A\beta) = A.Vin$ $\frac{Vout}{Vin} = \frac{A}{1 + A\beta}$

GAIN SENSITIVITY

Relative Change in Feedback Loop Gain

$$\frac{\Delta Af}{Af} = \frac{\Delta A}{A} \left(\frac{1}{1+A\beta}\right)^{Sensitivity Function}$$
Relative Change in Open Loop Gain

EXAMPLE

Calculate Feedback Loop Gain

 $\therefore \text{ Af} = 10 \pm 0.3$

Step 1:Step 2:Step 3:
$$\beta = \frac{R1}{R1 + R2}$$
 $Af = \frac{A}{1 + A\beta}$ $\frac{\Delta Af}{Af} = \frac{\Delta A}{A} \left(\frac{1}{1 + A\beta}\right)$ $\beta = \frac{1K}{1K + 10K} = \frac{1}{11}$ $Af = \frac{100}{1 + 100 \times \frac{1}{11}} = 10$ $\Delta Af = \frac{30}{100} \left(\frac{1}{1 + \frac{100}{11}}\right) \times 10$ $\Delta Af = 0.3$

BANDWIDTH EXTENSION

Normal Open Loop Amplifier Gain: $A_{OL} = \frac{Ao}{1+j\frac{f}{fc}}$

Feedback Gain:

$$Af = \frac{A_{0L}}{1 + \beta A_{0L}}$$

$$Af = \frac{A_{0}}{1 + j\frac{f}{fc} + \beta A_{0}}$$

$$Af = \frac{A_{0}}{(1 + \beta A_{0})} \left(1 + j\frac{f}{(1 + \beta A_{0})fc}\right)$$

$$Af = \frac{A_{0}}{(1 + \beta A_{0})} \times \frac{1}{\left(1 + j\frac{f}{(1 + \beta A_{0})fc}\right)}$$

Zero Frequency

CURRENT CAPTURE AND SUPPLY

VOLTAGE CAPTURE AND SUPPLY

VOLTAGE CAPTURE VOLTAGE SUPPLY

CURRENT CAPTURE CURRENT SUPPLY

CURRENT CAPTURE VOLTAGE SUPPLY

VOLTAGE CAPTURE CURRENT SUPPLY

CHAPTER 12 POWER AMPLIFIERS

WHY USE POWER AMPLIFIERS ?

CLASS A

- Conducts for the whole cycle
- Output is shifted by some DC value
- Always biased to operate in active mode by Iss

CLASS B

- Each transistor conducts for half the cycle
- Output is not shifted by some DC value
- No output voltage is produced when Vi<0.7

- Conducts for the whole cycle
- Output is not shifted by some DC value
- Always biased to operate in active mode by Vgg

CLASSES OF POWER AMPLIFIERS

S.NO.	CLASS	EFFICIECY	CONDUCTION ANGLE	DISTORTION
1	А	25%	⊖ = 360	NO
2	В	78.5%	Θ = 180	YES
3	AB	25%↔78.5%	360> 0 >180	NO
4	С	>78.5%	Θ < 180	YES

CONDITIONS FOR OSCILLATIONS

Barkhausen Stability Criterion

PHASE SHIFT OSCILLATIOR

COMPARATORS

MULTIVIBRATORS

Astable

The circuit is not stable in either state —it continually switches from one state to the other. It functions as a relaxation oscillator.

Monostable

One of the states is stable, but the other state is unstable (transient). A trigger pulse causes the circuit to enter the unstable state. After entering the unstable state, the circuit will return to the stable state after a set time.

Bistable

The circuit is stable in either state. It can be flipped from one state to the other by an external trigger pulse.

Thank You