

Interim Report
EE8205 Embedded Computer Systems

Porting Android to DE1 SoC (Altera Cyclone V)

By: Muhammad Obaidullah

Supervisor: Dr. Gul N. Khan

2

Introduction
Android has grown to be the number one smartphone operating system. While Android continues to be the

most popular Operating System (OS) for smartphones and tablets, it is also being adopted for other embedded

devices and industrial equipment. Applications which are soft real-time to hard real-time can take advantage

of the GUI rich OS, advanced APIs and Inter-Process Communication (IPC) framework. Since the introduction

preemptive kernel mode in Linux version 2.4 and later, Linux OS can now be used for hard real-time

applications.

There are a number of free software libraries provided with Android and taking advantage of these will reduce

the development cost of the application. Provided libraries include Web browser, File System, WebKit, SQLite,

OpenGL/ES, Graph/chart, and Network Stack. Until now, powerful embedded GUIs were rarely available and

very expensive. GUI for Android can be designed easily using android XML layout files and tuned according to

customer's needs. GUI by default is compatible with multi-touch, giving the familiar easy-to-use feeling of a

smartphone operating system.

Why Android on DE1 SoC?
Porting Android to Cyclone V will allow much higher abstraction level than working with plain linux C/C++

native code. Applications within the OS can take advantage of FPGA acceleration and the well-implemented and

well-tested Android software stack. Porting android to DE1 SoC allows use of over 2.4 million applications

currently available in the Google Play store. It also opens new boundaries for software developers to explore

hardware accelerations for compute intensive applications. It has been found that real-time operating systems

designed for Symmetric Multi-Processing (SMP) will generally provide similar or better performance and lower

latency than bare-metal applications (no operating system). Besides having an FPGA fabric within the Cyclone

V, it contains dual ARMv7 cores within the HPS which are well-capable of running Android.

From research point of view, it is beneficial to explore the advantages and drawbacks of an embedded system

which makes use of hardware acceleration rather than increased CPU clocks. Use of such hybrid system may

reduce overall system power consumptions.

Linux Kernel
Linux is an operating system found in a wide variety of computing devices including personal computers,

servers, smartphones and other embedded systems. Among other features, most important feature provided

by any operating system is multitasking. This is so that the hardware resources (processing unit, memory, etc.)

available on the chip can be shared among requesting tasks and allow the processor to give illusion of

performing multiple tasks at once (concurrency).

Although sometimes used interchangeably, there is a difference between a kernel and an operating system. The

kernel is part of operating system. It is responsible for memory management, network management, device

driver, file management, and process management. An operating system is composed of the kernel and

applications (i.e. compiler, text editor, window manager, GUI) which enables users to perform useful tasks. In

other words, the kernel is the ‘brain’ of the operating system.

Any task which is to be performed by the kernel has higher priority than the task performed by the user.

Therefore, modern CPUs have two modes in which a task can be run, kernel mode (system mode) or user mode.

In kernel mode, the CPU executes instructions which are related to kernel (kernel code) and provides unlimited

access to the code. Any instruction can be executed in kernel mode and any memory address can be referenced.

All other codes are executed in user mode where some CPU instructions cannot be directly initiated and some

3

memory locations are off-limits. Hence, if the user code wants to execute some instructions which are not

available in user mode, it has to make a ‘system call’ in order to perform privileged instructions. Such privileged

instructions include process creation and input/output operations.

In non-preemptive type kernels, while a process is in kernel mode, it cannot be arbitrarily suspended and

replaced by another process (i.e., preempted) for the duration of its time slice (i.e., allocated interval of time in

the CPU), in contrast to user mode, except when it voluntarily relinquishes control of the CPU. Although the

Linux kernel was of non-preemptive nature, which means that the kernel mode tasks were not interruptible,

the version 2.4 and later are preemptive. This makes Linux kernel strong candidate for embedded devices and

control applications where timing and interrupt handling are crucial. Processes in kernel mode can be

interrupted by an interrupt or an exception.

Android
Contrary to popular belief, Android is not an operating system. Android is an open source software stack for a

wide range of mobile and embedded devices and corresponding open source project led by Google. It is

emerging as developer’s choice in order to program, develop, and design or IoT, mobile computing, and other

embedded devices because of its highly abstracted and modularized components which eases software

development. Android provides the freedom to the developer to implement own device specifications and

drivers. The hardware Abstraction Layer (HAL) provides a standard method for creating hooks between the

Android platform stack and custom hardware.

Application Framework
Application framework provides software developers

with APIs to use in order to develop android

applications. This is the final layer on which the app

runs. Some developer APIs map directly to underlying

HAL interfaces too.

Binder IPC
Binder Inter-Process Communication (IPC) is a

mechanism which facilitates inter-processes

communications. It allows application framework to

cross boundaries and call into the Android system

services code. This allows high-level APIs to interact

with Android systems services. Normally, under Linux

environment, the processes communicate by using

named FIFOs, signals, sockets, semaphores, message

queues, or shared memories. A higher abstraction is

done of this inter-process communication technique and

provided as a feature in Android stack. It is a lightweight

RPC (Remote Procedure Communication). One Android

process can call a routine in another Android process,

using binder to identify the method to invoke and pass

the arguments between processes.

System Services
System services lie in the middle of HAL and application framework and allow APIs to communicate with the

underlying hardware. They are focused and modular components which provide focused helping hand to the

software developer. For example Notification Manager manages all notifications and can be asked by any

process to view/edit/delete notifications. Similarly, Camera Service allows processes to view camera stream,

trigger image capture etc.

Figure 1: Android System Architecture.

4

Hardware Abstraction Layer (HAL)
The hardware abstraction layer defines a standard interface for hardware vendors to implement and allows

Android to be agnostic about lower-level driver implementations. HAL implementations are packaged into

modules (.so file) and loaded by Android system at appropriate time (dynamic linking). Each specific hardware

added into the custom system needs to have a corresponding HAL and driver. Android does not specify a

standard interaction between HAL implementation and device drivers, so developers are free to do what is best

for the situation. However, in order for Android to correctly interact with custom hardware, contract defined

in each hardware-specific HAL interface should be followed.

Each hardware-specific HAL interface has properties that are defined in source code provided by Google. This

guarantees that HALs have a predictable structure. This interface allows the Android system to load the correct

versions of custom HAL modules in a consistent way. There are two general components that a HAL interface

consists of: a module and a device.

A module represents a custom packaged HAL implementation, which is stored as a shared library (.so file). It

contains metadata such as the version, name, and author of the module, which helps Android find and load it

correctly. The hardware.h header file in the source code defines a struct, hw_module_t, that represents a

module and contains information such as the module version, author, and name.

In addition, the hw_module_t struct contains a pointer to another struct, hw_module_methods_t, that contains

a pointer to an "open" function for the module. This open function is used to initiate communication with the

hardware that the HAL is serving as an abstraction for. Each hardware-specific HAL usually extends the generic

hw_module_t struct with additional information for that specific piece of hardware.

Linux Kernel
Developing custom device drivers is similar to developing a typical Linux device driver. Android uses a

version of the Linux kernel with a few special additions such as wake locks (a memory management system

that is more aggressive in preserving memory), the Binder IPC driver, and other features important for a

mobile embedded platform. These additions are primarily for system functionality and do not affect driver

development.

Developer can use any version of the kernel as long as it supports the required features (such as the binder

driver). However, it is recommended to use the latest version of the Android kernel provided by Google.

5

Literature Review
What has been done?
So far three entities have managed to port Android successfully to Altera Cyclone V SoC.

Entity Name Missing Features
OS Image

Available

Source Code

Available
Link

MRA Digital [1] - No No https://youtu.be/zHqS_yWiMNI

Fujisoft [2] - No No

https://www.fsi-

embedded.jp/e/_emb/gaforandr

oid_e/

University of Toronto

[3]
Audio CODEC Yes No

https://rocketboards.org/foswik

i/view/Projects/AndroidForDE1

SoCBoard

One implementation is from University of Toronto’s 4th year capstone project at Department of Electrical &

Computer Engineering, with group members Kevin Nam, David Xie, and Steven Nesmith, under supervision of

Prof. Stephen Brown.

An Android app called "DE1SOC" comes preinstalled in the image. This Android app was created to

demonstrate Android app to FPGA communication. Shown in Figure 2, the app has an interface that allows

users to toggle the LEDs on the board, as well as read the value of the switches. These LEDs and Switches are

connected to the FPGA's I/O pins, which are in turn connected to PIO IP cores that have been instantiated in

the FPGA. These cores provide memory-mapped register interfaces which are made available to the ARM

processor through the lightweight HPS-to-FPGA bridge. The Linux kernel's GPIO drivers are used to expose the

pins as GPIO devices (in /dev/), providing a file-based I/O mechanism. The Android app is then able to read

and write these files to read and write the values of the LEDs and switches. The FPGA is programmed

automatically as part of the boot sequence.

Users can interact with the GUI by using the touch screen of the Terasic MTL. If an MTL is not available, users

can use a USB mouse, connected to one of the two USB ports. When a mouse is connected, a mouse cursor will

appear on the screen. Users can provide internet connectivity by plugging in an ethernet cable. Support for the

board's audio CODEC has not been implemented at this time. They used Chris Rauer's modified Linux kernel

with added support for the Altera frame buffer.

Figure 2: Android running on DE1 SoC Altera Cyclone V by University of Toronto.

https://youtu.be/zHqS_yWiMNI
https://rocketboards.org/foswiki/view/Projects/AndroidForDE1SoCBoard
https://rocketboards.org/foswiki/view/Projects/AndroidForDE1SoCBoard
https://rocketboards.org/foswiki/view/Projects/AndroidForDE1SoCBoard

6

Porting
Building Altera Linux OS
Altera provides Linux BSP support for the Cyclone V SoC FPGA Development Kit, and provides the following:

 Linux kernel 3.7

 Preloader

 Uboot version 2012.10

 Yocto version ‘Danny’

 The packages for the root file system

 The tool chain (Linaro-GCC, v4.7)

Yocto is used to build the sources of the kernel, the u-boot and the root file system. There are many source

code packages available under the Yocto project. The Linux kernel source and binaries can be downloaded

from Altera(http://software.altera.com/linux_socfpga). In addition to this, Git also has source code for

modified linux for Altera SoCs at: https://github.com/altera-opensource/linux-socfpga

Host Setup
I am using 64 bit Ubuntu MATE (16.04.1 LTS) as a host machine to compile the Altera Linux OS. There are few

packages required to be installed before building the Linux OS image for Altera Cyclone V FPGA.

1. First we need to update the package manager using the following command:

2. Update the package manager using the following command:

3. Install the required packages using the following command:

4. Install software to make bootable image using the command given below:

5. Also, since the host machine runs 64 bit version of OS, we also need to install:

Yocto Setup
The source code package (linux-socfpga-13.02-src.bsx) was downloaded from Altera’s website and the

following steps were taken.

1. The default install location is /opt/altera-linux. To install the package, enter the following command:

2. Update the package manager using the following command:

$ sudo apt-get update

$ sudo apt-get uprade

$ sudo apt-get install sed wget cvs subversion git-core coreutils unzip texi2html texinfo

libsdl1.2-dev docbook-utils gawk python-pysqlite2 diffstat help2man make gcc build-essential

g++ desktop-file-utils chrpath libgl1-mesa-dev libglu1-mesa-dev mercurial autoconf automake

groff libtool xterm

$ sudo apt-get install uboot-mkimage

$ sudo apt-get install ia32-libs

$ sudo linux-socfpga-13.02-src.bsx /opt/altera-linux

$ sudo /opt/altera-linux/bin/install_altera_socfpga_src.sh ~/yocto- 13.02

http://software.altera.com/linux_socfpga
https://github.com/altera-opensource/linux-socfpga

7

3. Run the script provided by Altera to set up the build variables needed to compile the Linux kernel:

4. Build u-boot:

5. Build Linux kernel:

6. Build root filesystem:

7. The images are generated in ~/build/tmp/deploy/images

Testing the Linux on board
To boot the linux images on SoC FPGA development kit, we can write the images we just built with Yocto into

one of the three Flash devices: SDMMC, NAND and QSPI. We will use SDMMC due to its easy detachability. For

SDMMC boot, all boot images will be located inside SDMMC card. A script is provided with the release that

will create an SD card image, ready to be deployed.

The provided tool, named make_sdimage.sh, will create a 2GB SD card image, with three partitions:

Partition 1
(FAT)

Partition 2
(ext3)

Partition 3
(NONAME)

Linux kernel and device
tree

The Linux root file system
 Partition used by the SoCFPGA

to load the preloader.
 Also contains u-boot image

Following command is entered to make the image:

Where:

 -k accepts a comma separated list of files. Here, we show the kernel and the device tree blob.

 -p the preloader raw binary, as generated by Yocto or the U-Boot Makefile

 -b the bootloader image, as generated by Yocto or the U-Boot Makefile

 -r the directory where the file system is located

 -o the image name

Building Android from Source
Android Open Source Project (AOSP) has several branches, repositories (repos) and contributors. This is the

reason they use a script called Repo to manage all git repositories in context of Android. [4]

Installing Repo
1. Create a directory called bin in home folder by entering the following command:

$ sudo source altera-init ~/yocto-13.02/build

$ sudo bitbake u-boot

$ sudo bitbake linux-altera

$ sudo bitbake altera-image

$ sudo make_sdimage.sh \
-k uImage,socfpga.dtb \
-p u-boot-spl-socfpga_cyclone5.bin \
-b u-boot-socfpga_cyclone5.img \
-r fs \
-o sd_image.bin

8

2. Add the newly created directory to PATH using the following command:

3. Download curl. Curl downloads files from servers using the http link provided. This is done by using

the following command:

4. Download the Repo tool:

5. Change the downloaded script to executable:

Downloading Source
1. Create an empty directory called WORKING_DIRECTORY in home folder by entering the following

command:

2. Install git (version control tool) by using the following command:

3. Configure git by putting user name and email:

4. Initialize repo in the WORKING_DIRECTORY by:

5. Checkout, sync, and download the source from Google’s repository by using the following command:

Building Android for Altera Cyclone V SoCFPGA
This is the next step which involves placing the already build kernel into the working directory of the android

source code and then building the Android OS image.

Expected Final SD Card Image Structure
Partition 1

(IMAGE)
Partition 2
(ROOTFS)

Partition 3
(NONAME)

Partition 4
(DATA)

Linux kernel
Android OS

APKs eg. apps from
Google Play

Uboot
Flexible Space

Pictures (.jpg, .png)

$ sudo mkdir ~/bin

$ sudo PATH=~/bin:$PATH

$ sudo apt-get install libcurl3 php5-curl

$ sudo curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo

$ sudo chmod a+x ~/bin/repo

$ sudo mkdir WORKING_DIRECTORY

$ sudo apt-get install git-all

$ git config --global user.name "Muhammad Obaidullah"

$ git config --global user.email "mobaidullah@ryerson.ca"

$ sudo repo init -u https://android.googlesource.com/platform/manifest

$ sudo repo sync

9

Project Progress
Timeline

Gantt Chart
 Week

T
a

sk
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Learning Android OS

 Defining Project

 Project Proposal

 Researching Linux

 Building Linux Kernel

 Interim Report

 Building Android OS

 Configuring FPGA

 HPS Hooks

 Android App

 Final Demo

 Final Report

Legend:

 Study or Research

 Submission

 Writing or Design

 Coding

 Demo

10

Conclusion
Dynamic App-based Partial

Reconfiguration

Porting android stack to a HPS-FPGA system allows apps to take advantage of FPGA fabric and perform partial

reconfiguration to build and tear-down application specific accelerators on the remaining FPGA fabric. Since

Cyclone V is not designed to run Android by default, graphic rendering engine and audio logic needs to be

implemented in the FPGA. The left-over Les can be used to implement any app-specific logic accelerator.

Since, audio and video logic should not be touched while the Android OS is running, partial reconfiguration of

the FPGA fabric needs to be done. Cyclone V can be dynamically partially reconfigured using Partial Masked

SRAM Object File (.pmsf) and Raw Binary File for Partial Reconfiguration (.rbf). Each app can load its own .rbf

file from SD card onto FPGA. However, there should be certain checks in place in order to catch and avoid short-

circuits and other common I/O errors used by loaded logic and logic to be loaded.

Figure 3: Hardware System for Android OS on Altera Cyclone V.

ALTERA Cyclone V

L1 CAHCE L1 CAHCE

L2 CAHCE

HPS

Video
DAC

VGA

DISPLAY

ANDROID
OS IMAGE

USB
PHY

DDR3
SDRAM

USB
HUB

FPGA

ANDROID 2D
RENDERING

ACCELERATOR

APP
SPECIFIC

LOGIC

GPIO

ADC

IR TX/RX

ANDROID
AUDIO LOGIC

11

References

[1] Intel, "Implementation of an Android™ Operating System on an Altera SoC," Intel, 8 January 2014.

[Online]. Available: https://youtu.be/zHqS_yWiMNI. [Accessed 9 November 2016].

[2] "Graphics Accelerator for Android," FUJISOFT INCORPORATED, 15 November 2013. [Online]. Available:

https://www.fsi-embedded.jp/e/_emb/gaforandroid_e/. [Accessed 9 November 2016].

[3] M. Daum, "Android for DE1-SoC Board," RocketBoards.org, 6 October 2016. [Online]. Available:

https://rocketboards.org/foswiki/view/Projects/AndroidForDE1SoCBoard. [Accessed 9 November

2016].

[4] Google Inc., "Android Open Source Project," Google, 23 August 2016. [Online]. Available:

https://source.android.com. [Accessed 9 November 2016].

