ENERGY CONVERSION FORMULA SHIT

1. DC MACHINES

4 EFFICIENCY

✓ Efficiency =
$$\frac{Pout}{Pin} \times 100\%$$

✓ Efficiency =
$$\frac{Pin-Ploss}{Pin} \times 100\%$$

♣ ELECTRICAL OR COPPER LOSSES

✓ Armature Loss =
$$P_A = I_A^2 \times R_A$$

$$\checkmark$$
 Field Loss = $P_F = I_F^2 \times R_F$

♣ BRUSH LOSSES

$$\checkmark$$
 Brush Loss = $P_{BD} = V_{BD} \times I_A$

POWER FLOW

✓ Electrical Power Converted =
$$P_{conv} = E_A \times I_A$$

✓ Mechanical Power Converted =
$$P_{conv} = \tau_{ind} \times \omega_m$$

torque and voltage

✓ Internal Generated Voltage =
$$E_A = K\phi\omega$$

✓ Induced Torque =
$$\tau_{ind} = K\phi I_A$$

✓ Terminal Voltage =
$$V_T = E_A + I_A R_A$$

♣ SPEED AND VOLTAGE

✓
$$\frac{Speed \ with \ Load \ 1}{Speed \ with \ Load \ 2} = \frac{n_1}{n_2} = \frac{E_{A1}}{E_{A2}}$$

🖶 DC SHUNT MOTOR EQUIVALENT CIRCUIT

🖶 DC SEPERATELY EXCITED MOTOR EQUIVALENT CIRCUIT

♣ DC SERIES MOTOR EQUIVALENT CIRCUIT

L DC SERIES MOTOR TORQUE

✓ Induced Torque = $\tau_{ind} = KcI_A^2$

Where c is proportionality constant

L DC COMPOUND MOTOR EQUIVALENT CIRCUIT

2. INDUCTION MOTORS

 $Slip Speed = n_{slip} = n_{sync} - n_m$

$$\checkmark$$
 $Slip = s = \frac{n_{sync} - n_m}{n_{sync}}$

✓ Rotor Frequency =
$$f_r = \frac{No.of\ Stator\ Poles \times Slip\ Speed}{120} = \frac{P \times n}{120}$$

✓ New Frequency = $f_r = sf_e$

✓ Torque of the Load =
$$\tau_{load} = \frac{P_{out}}{\omega_m}$$

$$\checkmark \omega_m = \frac{2\pi n_m}{60} rad/s$$

$$\checkmark$$
 Horse Power = $hp = 746 Watts$

