Class Notes: Embedded Computer Systems

Muhammad Obaidullah
M.A.Sc. Candidate, Ryerson University, mobaidullah@ryerson.ca

I. LECTURE l: 7" SEPTEMBER 2016
A. Assesment & Evaluation

Lecture, Projects and other Material are available at the
course website: http://www.ee.ryerson.ca/~courses/ee8205/

Lab Project: | 20%
Project: 40%
Final Exam: | 40 %

B. Definitions & Classifications

Embedded System: Any System which performs certain
useful function(s) and has some form of information processing
machine in it (Embedded) is called an embedded system. Em-
bedded Systems are not subset of general purpose computers.
Real-time System: Any System which responds to externally
generated stimulus within a finite and specific time is known
as real-time system. If that system makes use of a information
processing machine (eg. CPU), then it is also an embedded
system. Most real-time systems are also embedded systems.

C. Real-time Systems

1) Soft real-time: Systems where deadlines are important
but the system won’t suffer in case of missing deadlines
occasionally. For example: weather data acquision system
(no major issue if data for some minutes is not recorded).

2) Firm real-time: Systems where deadlines are important.
However, there is no benifit from late delivey of service.
For example: UDP live video transmission (some video
frames can be skipped).

3) Hard real-time: Systems where deadlines are extremely
important and response should occur within a specific
deadline. For example: flight control system (system has
to repond immediately to compensate tilt).

4) Real real-time: Systems where deadlines are extremely
important and missing one deadline will cause system
faliure. For example, missile guidance systems.

D. Multi-Tasking & Concurrency

Task: A thing to do within the application. Any function
or collection of functions which are performed in one context
is called a task. A task is a basic unit of programming that an
operating system controls. Depending on how the operating
system defines a task in its design, this unit of programming
may be an entire program or each successive invocation of a
program.

Process: A process, in the simplest terms, is an executing
program. One or more threads run in the context of the
process. A process has its own memory space to store
variables. If a process needs to share some variables with
other processes, it needs to do it manually. See figure [1]

| Physical memory ‘

Rt memory mapping

|||uxsoou

| |°‘ww| mamory Space

| MEMory Space |
Process 1 Process 2
Thread 1 Thread 2 Thread 1 Thread 2
«Stack *Stack «Stack «Stack
*Registers *Registers *Registers Registers
PC I PO | PC I PC |
Y Y Y Y
| Thread scheduler (OS) |
| Processor | | Processor |

Figure 1: Differences between a process and thread.

Thread: A thread is the basic unit to which the operating
system allocates processor time. A thread can execute any part
of the process code, including parts currently being executed
by another thread. Threads can share variables easily as they
are using the same memory space.

Context: Context can be seen as a bucket to pass information
around. It is typically used to pass things not necessarily
tied directly to a method call, but could still be pertinent. A
layperson way of describing it might be §tuff you may care
about- For example, if you were writing a service to update a
value in a db, you’d probably pass in the record id, and the
new value.

Multi-Tasking: It is an ability of a information processing
machine to perform multiple functions simultaneously.

Concurrency: To occur or exist simultaneously or side
by side. However, real-world embedded systems give an
appearance of having multiple tasks running concurrently
while in reality they are switching fast between them. This is
to allow multi-tasking on a single CPU core.

Semaphore: It is a variable or abstract data type that
is used for controlling access, by multiple processes, to
a common resource in a concurrent system such as a
multiprogramming operating system.

Mutex: Short for MUTual EXclusion object. A mutex
is a program object that allows multiple program threads
to share the same resource, such as file access, but not
simultaneously. A mutex is like a lock. A thread can lock it,
and then any subsequent attempt to lock it, by the same thread
or any other, will cause the attempting thread to block until
the mutex is unlocked. See figure

mobaidullah@ryerson.ca
http://www.ee.ryerson.ca/~courses/ee8205/

Mutex

release release

shared resource

Acquire
Mutex
J
Attempt to.
acquire Mutex

Figure 2: Using a shared object to lock access to critical part
of program.

Semaphore vs Mutex: A mutex can only be released by the
thread which has ownership, i.e. the thread which previously
called the Wait function, (or which took ownership when
creating it). A semaphore can be released by any thread.

II. LECTURE 2: 14"" SEPTEMBER 2016
A. Characteristics of Real-time System

The largest and most complex embedded system is Inter-

national Space Station (ISS) and has 20 million lines of Ada
code. Real world applications are parallel. Thus, embedded
systems are required to perform many tasks at the same time.
If parallelism is natively not supported by embedded systems,
concurrent desgin can give the appearance of parallelism.
Functional Requirements: Requirements of the system which
defines how the embedded systems should work and task it
should be able to perform. Speed, deadlines, user-interface,
and input/output formats are some examples of functional
requirements.
Non-functional Requirements: Requirements which are not
related to how the embedded system should operate or work.
Manufacturing cost, power, and time-to-market are some ex-
amples of non-functional requirements.

B. Performance Paradox

Custom logic design, advanced micro-processor power con-
trol features, and software design can help reduce power
consumption. However there is trade-off between power con-
sumption, chip area, and speed of the embedded system.

C. Homogenity of Embedded Systems

1) Heterogenous System: Systems which contain different
components which perform specific tasks are called het-
erogenous systems. Eg. CPU + GPU System

2) Homogenous Systems: Systems which contain similar
components which perform general tasks are called ho-
mogenous systems. Eg. Quad-core CPU

D. Design Methodologies

1) Top-down Design: Start from overall system design and
reach lower hardware and software level.

2) Bottom-Up Design: Start by developing software and
hardware of the system first and then make the overall
system design and connect components together.

Hardware-Software Co-design

E. Co-design

Separate hardware and software design has been explored
and examined very throughly. But if we combine the design of
hardware and software together, there are several advantages
of doing this. Time-to-market shortens and several perfomance
non-functional requirements can be incorporated into design
phase and tasks can be decided to be either performed on
hardware or software. The entire workflow for codesign is
given in figure [3

Non-Functional Functional

Specifications Specifications
Hardwar.e./ Sqftware Task Graph Generation
Partitioning
. Hardware/Software
S Co-synthesis
Hardware/Software Hardware/Software
Co-verification Co-simulation

Figure 3: Hardware-Software Co-design workflow.

Why Hardware-Software Co-design?
Implementing entire application in software makes meeting
performance requirements difficult. Therefore, intensive por-
tions (computationally complex) of the application are imple-
mented in specific hardware. This specific hardware maybe
implemented on an FPGA or an ASIC. When such specific
hardware is embedded into a system, it is called an accelerator.

F. Hardware-Software Partitioning

Hardware-software partitioning is the task to decide which
portion of the application is to be implemented where. It
is done in the early stages of system design. Therefore,
top-down design is prefered in hardware-software codesign.
For example, in image encoding application, loading and

Video Noise Reduction Component

Image Window

Generator FIR Filter
DATA IN | DATA IN DATA OUT DATA IN DATA OUT > DATA OUT i:>
| 1
». V_SYNC > V_SYNC VALID > W SYNC VALID b VALID j———p-
1 - - 1
R R V SYNC f——— V SYNC =——b
! H_ SYNC > H_SYNC]
b H_SYNC p=—— H SYNC ——>
1
1
»! RESET 9 (| RESET »(| RESET
|
: > cLock BUSY h —{> cLock BUSY
1
1
1
b
1
1

Figure 4: A video noise reduction accelerator implemented in VHDL.

managing the data into memory should be done by software
while preforming FFT(Fast-Fourier Transform) should be
done by hardware accelerator (FPGA or ASIC).

Accelerator: In computing, hardware acceleration is the use of
computer hardware to perform some functions more efficiently
than is possible in software running on a more general-purpose
CPU. It is pereferable to assign computationally intensive
tasks (eg. calculating a derivative) to accelerators while
logically intensive tasks (eg. switch statements) to CPU. An
example video noise reduction accelerator is shown in figure 4]

HW-SW Co-specification: It is description of system at
abstract level which describes hardware specification and
software specification as well. Often SystemC is used to
describe the system. System description is converted into a
task graph representation where nodes are tasks and arrows
represent data transfer from task to task and the weight of
arrow indicates volume of data transfer.

HW-SW Co-Synthesis: Synthesis (making) hardware
and software together. When a designer writes VHDL code
and C++ code for the same application to enable working of
the entire system.

HW-SW Co-Simulation: Simulation of hardware and
software together. When a designer treis to see how
the VHDL code and C++ code for the same application are
working using a simulator environment or language (SystemC).

HW-SW Co-Verification: Verifying that the hardware
and software for the application is working and coperating
with each other. This is also usually done using SystemC.

G. Scheduling

Scheduling is to determine when tasks start execution and
on what device.

(@)

(1) ()

H®
OF

Legend:

[]HW
[]sw

Task Graph HW/SW Partitioning
| @[]
swit] | 1 | IS
time
Scheduling

Figure 5: Scheduling of an application task graph.

H. Phases of Co-synthesis

Cosynthesis is automatic or semi-automatic design of hard-
ware and software modules to meet the specifications. Figure
[6] explains the stages.

e Partitioning Dividing the functionality of an embedded
systems into units of computation. A large task is divided
into smaller steps and an algorithm is developed. Doing
these smaller steps or computations lead to the large task
being done.

e Scheduling After smaller units of task are identified, it is
now time to decide in what order will these tasks be done.

e Allocation Assigning processing elements (PEs) to the
tasks is known as allocation. In other words, deciding
which task will be done which PE.

e Mapping Choosing a type of PE to do group of tasks

allocated to it in previous stage. A PE can be a CPU, GPU,
FPGA, ASIC or any custom hardware which is capable
of doing any useful computation.

An application
! LS i kS i s 4 ' | Partitioning
Task 1 || Task2 Task 3 Task 4 || Task5 || Task6 || Task7
@ l % Scheduling
| Task 2 | | Task 3 |
Task 4 Task 6 Task 5
| 2= | | 25 | | | Allocation
PE 1 PE 2 PE 3
r— r— r—
| I I |
| I I |
i| PE1 |1 (| PE2 || {| PE3 |I .
| I I I Mapping
Uem! U U
GPU CPU ASIC

Figure 6: Phases of Co-synthesis.

III. LECTURE 3: 215" SEPTEMBER 2016

A. What is SystemC?

It is a C++ library which includes several C++ classes and
macros for event-driven simulation. It was developed to model,
verify, and simualte hardware/software systems together.

B. C++vs C

C++ extends standard C language to include classes, objects
and other features which allow programmers to better organize
their code and offers modularity in form of object oriented
programming. When C programs grow large, it gets difficult
to organize and structure the code. Also, it gets difficult to read
and debug the code as program size grows large. The closest
C comes to object oriented programming is by use of structs.

C. Makefile

Compiling source code files can be tedious, specially when
programmers wants to include several source files and has to
type the compiling command everytime for compiling.

Let’s start off with the following three files, hellomake.c,
hellofunc.c, and hellomake.h, which would represent a typical
main program, some functional code in a separate file, and an
include file, respectively. Normally, you would compile this
collection of code by executing the following command:

1| gcc —o hellomake hellomake.c hellofunc.c —I.

Project Directory

1

hellomake.c hellomake.h hellofunc.c

#include <stdio.h>
#include <hellomake.h>
void myPrintHelloMake(void) {
printf("Hello makefiles'\n");
return;

#include <hellomake.h>
int main() { i
//Call function in another file |

/* example include file */

myPrintHelloMake(); void myPrintHelloMake(void);

return(0);

B

Figure 7: Example C/C++ project structure.

This compiles the two .c files and names the executable
hellomake. The -I. is included so that gcc will look in the
current directory (.) for the include file hellomake.h. Without
a makefile, the typical approach to the test/modify/debug cycle
is to use the up arrow in a terminal to go back to your last
compile command so you don’t have to type it each time,
especially once you’ve added a few more .c files to the mix.

Unfortunately, this approach to compilation has two downfalls.
First, if you lose the compile command or switch computers
you have to retype it from scratch, which is inefficient at
best. Second, if you are only making changes to one .c file,
recompiling all of them every time is also time-consuming
and inefficient. So, it’s time to see what we can do with a
makefile. The simplest makefile you could create would look
something like:

hellomake: hellomake.c hellofunc.c
gcc —o hellomake hellomake.c hellofunc.c —I

If you put this rule into a file called Makefile or makefile
and then type make on the command line it will execute the
compile command as you have written it in the makefile. Note
that make with no arguments executes the first rule in the
file. Furthermore, by putting the list of files on which the
command depends on the first line after the :, make knows that
the rule hellomake needs to be executed if any of those files
change. Immediately, you have solved problem 1 and can avoid
using the up arrow repeatedly, looking for your last compile
command. However, the system is still not being efficient in
terms of compiling only the latest changes. A complete sample
make file is given below:

IDIR =../include

2| CC=gcc

CFLAGS=—I$ (IDIR)

ODIR=0bj
J|LDIR =../1ib

LIBS=—Im

_DEPS = hellomake .h
DEPS = $(patsubst %,$(IDIR)/% ,$(_DEPS))

_OBJ = hellomake.o hellofunc.o

.|OBJ = $(patsubst %,$(ODIR)/%,$(_OBI))

$(ODIR)/%.0: %.c $(DEPS)

o

$(CC) —c —o $@ $< $(CFLAGS)

hellomake: $(OBJ)
gce —o $@ $° $(CFLAGS) $(LIBS)
.PHONY: clean

clean:
rm —f $(ODIR)/* .0 *~ core $(INCDIR)/*"~

D. Setting-up SystemC

1) Download the SystemC
downloads/standards/systemc
Set the SYSTEMC environment variable to the directory
of the SystemC installation. eg. If your installation direc-
tory is /usr/local/packages/systemc-2.2.0, run the follow-
ing command in terminal.

from http://accellera.org/

2)

% export SYSTEMC=/usr/local/packages/systemc
—-2.2.0

3) Once the environment variable is set, you can access
the SystemC installation by referring to the SYSTEMC
variable. The standard GNU C++ compiler g++ is then
used to compile SystemC code and link it against the
SystemC libraries. Note that if your are compiling on a
64-bit LRC machine, you will have to supply the -m32
flag (to match the LRC SystemC installation, which is

32-bit):

1|% g++ —m32 —I$SYSTEMC/ include
linux Isystemc

L$SSYSTEMC/1ib—
Im <source>

4) It is recommended that you create a Makefile for com-
piling your SystemC sources first to object (.0) files and
then linking everything together into a final simulation
executable.

5) Include the header in your source code:

| #include <systemc.h>

E. T-Flip Flop in VHDL

library ieee;
use ieee.std_logic_1164.all;

entity tff_sync_reset is
port (
data :in std_logic; — Data input
clk :in std_logic; — Clock input
reset :in std_logic; — Reset input
q :out std_logic — Q output

)3
end entity ;
rtl

architecture of tff_sync_reset is

signal t :std_logic;
begin
process (clk) begin
if (rising_edge(clk)) then
if (reset = ’0’) then
t <= ’0;
else
t <= not t;
end if;
end if;
end process;

qQ<=t;
end architecture ;

F. T-Flip Flop in SystemC

#include “systemc.h”

;| SCMODULE (tff_sync_reset) {

sc_in<bool> data;
sc_in<bool> clk;
sc_in<bool> reset;
sc_out <bool> q;
bool q_1 ;
void tff () {

if (Treset.read()) {

q_l1 = 0;
} else if (data.read()) {
q_1 = !q_1;

}

q.write(q_1);

}
SC_CTOR(tff_sync_reset) {
SC_METHOD (tff);
sensitive << clk.pos();

IV. LECTURE 4: 28" SEPTEMBER 2016
A. ROM-based & RAM-based FPGAs

RAM-based FPGAs can be reprogrammed easily while
RAM-based FPGAs can only be programmed once. We use
RAM-based FPGAs to design and verify the design and ROM-
based FPGAs to release the final design. Altera and Xilinx
FPGAs are RAM-based.

B. Types of CPU Architectures

1) Von Neumann: CPUs which have a single interface to the
memory. This interface is shared to access instructions
and data. They typically require more time to get the
complete data (ie. insturction and data). needed to execute
next intruction.

Code Data
Memory Memory
Data bus N II 't
By Address bus t
Control bus 1

Figure 8: Von Neumann CPU Architecture.

2) Harvard: CPUs which have a two interfaces to the mem-
ory (dual-port memory). One port to access instructions
and other to access data. These CPUs are typically faster
than Von Neumann architecture because of data access

parallelism.
—_— Data bus Data bus —
Code Add b Data
Memory — ress bus| CPU Address bus ___=——> Memory
[P Control bus| Controlbus __—— I

Figure 9: Harvard CPU Architecture.

http://accellera.org/downloads/standards/systemc
http://accellera.org/downloads/standards/systemc

C. Buses

For many decades people have speculated that Moore’s
Law might not be true in the next few years, but every time
technological advancement has surprised us all. The number of
cores on a single die are increasing as a result of advancement
in nanometer technology. 14nm chips were already developed
by Samsung in December 2012 and research is going on for
breaking the 10nm barrier. On-chip bus architecture is one of
the crucial components for platform-based SoC design.

Cramming more and more transistors onto single die
has lead the IC designers to integrate not one but many
modules and cores onto single chip and inter connecting
them. Like a computer needs to talk to a peripheral device
for input, output, or signal processing, similarly cores and
modules inside the chip need to talk to each other for passing
information.

Conventionally, modules were directly connected using
buses but as number of modules increased, the complexity
of the chip grew. To deal with complexity, abstraction and
regularity of design is required. IC designers began to think
of a network to topology to connect these cores and modules.
Common network topologies to interconnect cores include
bus, ring, two-dimensional mesh, and crossbar. Popular bus
architectures include AMBA bus -ARM’s bus architecture,
CoreConnect IBMs bus architecture (for PowerPC), Wishbone
Common architecture for open source IP design.

To sum it all, a bus is a shared communication link. It
is single set of wires used to connect multiple subsystems.

Master 1 Master 2
Master 3
Cache Cache
s Coherent Interconnect (Bus) ‘
Arbiter
Slave 1 Slave 2 ‘ Main Memory ‘ Slave 3 Slave 4
|

Figure 10: A Typical bus in an embedded system.

1) Bus Advantages

e Versatility: New devices can be added easily. Peripherals
can be moved between computer systems that use the
same bus standard.

e Low Cost: A single set of wires is shared in multiple
ways. Less chip area (wires occupy very small chip area),
power consumption, and complexity.

2) Bus Disadvantages

o Communication Bottleneck: Bandwidth of that bus can
limit the maximum I/O throughput.

e Limited Bus Speed: Frequency of operation depends on
bus length (if synchronous bus). The number of devices
on the bus (and, hence, bus loading) limit the bus speed.

3) Bus Masters & Slaves Master is one who starts the bus
transaction by issuing the command (and address). Slave
is the one who responds to the address by sending data to
the master asking for data or by receiving data from the

Bus Based Systems Network Based Systems
= AMBA = Mesh
. AXI = Torus
« Avalon = Hypercube
= STBus = Butterfly
= Wishbone " Tl,-ee
= CoreConnect * Ring

+ Cheap and easy to i - Difficult and costly to i

+ Multiple ications per cycle

- Only two cores can icate at a time
- Not Scalable

+ Scalable

Figure 11: Bus-based system vs network based systems.

master if the master wants to send data.

4) Synchronous vs Asynchronous In a synchronous bus,
operations are synchronized to a global bus clock while
in an asynchronous bus, a control signal edges (triggers)
signal bus events. On-chip buses are generally synchronous.

5) Avalon Bus It is a multiplexer based bus from Altera.
This means that data path is multiplexed instead of circuit
switched. The Avalon bus module (an Avalon bus) is a unit
of active logic that takes the place of passive, metal bus
lines on a physical PCB. Since the bus is active, it is less
prone to fan-out, fan-in problems. Also, adding peripherals
to bus is easier since it means adding addional logic into
the bus. Hence, it is used majorly in FPGA systems where
it should be easier to add or remove bus nodes.

Control
Slave

Nios CPU DMA Controller

Write Read
Master Master

Inst Data
Master Master

ﬁ |Avalon Bus Modul€

Bus Signal Legend

Write Data
<+—> & h 4
Control Signals
4> ReadData
=P Interf i
off-chip dévite A 4 A4

Slave Slave

Instruction Data
Memory Memory

SDRAM
Controller

Slave

Ethernet
Interface

SDRAM MAC/PHY

Figure 12: Avalon Bus Architecture.

6) AMBA Bus The ARM Advanced Microcontroller Bus
Architecture (AMBA) is an open-standard, on-chip inter-
connect specification for the connection and management
of functional blocks in system-on-a-chip (SoC) designs. It
facilitates right-first-time development of multi-processor
designs with large numbers of controllers and peripherals.
e CHI - Coherent Hub Interface - The highest perfor-

mance, used in networks and servers.
e ACE- AXI Coherency Extensions - Used in ARM

big. LITTLE systems for smartphones, tablets, etc.

e AXI - Advanced eXtensible Interface - The most
widespread AMBA interface. Connect 100s of Masters
and Slaves in complex SoCs

e AHB - Advanced High-Performance Bus - The main
system bus in microcontroller usage

e APB - Advanced Peripheral Bus - Minimal gate count
for peripherals

e ATB - Advanced Trace Bus - For moving trace data
around the chip, see ARM CoreSight

7

High-performance High-bandwidth
ARM processor on-chip RAM
B | UART I | Timer |
. R
High-bandwidth AHB or ASB | APB
External Memory)
Interface G
E| [Kewes |[PO |
DMA bus
master AHB 1o APB Bridge

or
ASB to APE Bridge

AMBA AHB AMBA ASB AMBA APB

" Low power

* Latched address and control
= Simple interface

* Suitable for many peripherals

* High performance

* Pipelined operation
* Multiple bus masters
* Burst transfers

* Split transactions

* High performance
* Pipelined operation
* Multiple bus masters

Figure 13: Advanced MCU Bus Architecture (AMBA).

PCI-E Bus Peripheral Component Interconnect Express
(PClIe or PCI-E) is a serial expansion bus standard for
connecting a computer to one or more peripheral devices.
Every device that’s connected to a motherboard with a
PClIe link has its own dedicated point-to-point connection.

This means that devices are not competing for bandwidth
because they are not sharing the same bus. Peripheral
devices that use PCle for data transfer include graphics
adapter cards, network interface cards (NICs), storage
accelerator devices and other high-performance peripherals.

With PCle, data is transferred over two signal pairs:
two wires for transmitting and two wires for receiving.
Each set of signal pairs is called a lane,ind each lane is
capable of sending and receiving eight-bit data packets
simultaneously between two points.

ey

Figure 14: PCI bus on a typical PC motherboard.

V. LECTURE 5: 5" OCTOBER 2016

A. SystemC Overview

User libraries SystemC Verification library Other IP
Predefined Primitive Channels: Mutexs, FIFOs, & Signals
Channels &
%) Threads & Methods Interfaces Data types:
% Simulation Logic,
173 Kernel Integers,
2) Events, Sensitivity Modules & Fixed point
& Notifications Hierarchy
C++ STL
Figure 15: SystemC language architecture.
e
SystemC
stl
—
.h
--_7\
e g+t > Id > .exe
.0
c /
Source Compiler Object Linker Executable
Files Files Files

Figure 16: SystemC compilation flow.

B. 2-level Logic

In binary logic the two levels are logical high and logical
low, which generally correspond to a binary 1 and O respec-
tively. Signals with one of these two levels can be used in
boolean logic for digital circuit design or analysis.

C. 4-level Logic

Four-valued logic taught on technical schools is used to
model signal values in digital circuits: the four values are 1,
0, Z and X. 1 and O stand for boolean true and false, Z stands
for high impedance or open circuit and X stands for don’t care
(e.g., the value has no effect).

D. 9-level Logic (IEEE 1164)

The IEEE 1164 standard defines a package design unit
that contains declarations that support a uniform representation
of a logic value in a VHDL hardware description. It was
sponsored by the Design Automation Standards Committee of
the Institute of Electrical and Electronics Engineers (IEEE).
The standardization effort was based on the donation of the
Synopsys MVL-9 type declaration.

’U’: Uninitialized

’X’: Strong drive, unknown logic value
’0’: Strong drive, logic zero

’1’: Strong drive, logic one

’Z’: High impedance

’W’: Weak drive, unknown logic value
’L’: Weak drive, logic zero

’H’: Weak drive, logic one

>->: Don’t care

E. Difference between SC_METHOD and SC_THREAD

SC_METHOD executes once to completion on an event it
is senstive to. On other hand, SC_THREAD starts running as
soon as it is contstructed and needs to have a wait() statement
inside a while(1) loop in order to run continously and listen
for events. Statements after wait() execute in the cycle after
the event and statements before it execute in current cycle.

void do_count() {

while (1) {
if (reset) {
value = 0;

else if (count) {
value ++;
q.write (value);

wait(); // wait till next event !

	Lecture 1: 7th September 2016
	Assesment & Evaluation
	Definitions & Classifications
	Real-time Systems
	Multi-Tasking & Concurrency

	Lecture 2: 14th September 2016
	Characteristics of Real-time System
	Performance Paradox
	Homogenity of Embedded Systems
	Design Methodologies
	Co-design
	Hardware-Software Partitioning
	Scheduling
	Phases of Co-synthesis

	Lecture 3: 21st September 2016
	What is SystemC?
	C++ vs C
	Makefile
	Setting-up SystemC
	T-Flip Flop in VHDL
	T-Flip Flop in SystemC

	Lecture 4: 28th September 2016
	ROM-based & RAM-based FPGAs
	Types of CPU Architectures
	Buses

	Lecture 5: 5th October 2016
	SystemC Overview
	2-level Logic
	4-level Logic
	9-level Logic (IEEE 1164)
	Difference between SC_METHOD and SC_THREAD

