
Faculty of Engineering, Architecture, and Science

Department of Electrical and Computer Engineering

Course Number EE8207
Course Title High Performance Computer System Design
Semester/Year Winter/2016

Instructor Dr. Nagi N. Mekhiel

Assignment No. 1
Assignment Title Installing and Using SimpleScalar Simulator

Submission Date 29th January 2016
Due Date 29th January 2016

Student Name Muhammad Obaidullah
Student ID. 500671408

Signature*

*By signing above you attest that you have contributed to this written lab
report and confirm that all work you have contributed to this lab report
is your own work. Any suspicion of copying or plagiarism in this work
will result in an investigation of Academic Misconduct and may result in a "0"
on the work, an "F" in the course, or possibly more severe penalties,
as well as a Disciplinary Notice on your academic record under the
Student Code of Academic Conduct, which can be found online at:
www.ryerson.ca/senate/current/pol60.pdf.

1

www.ryerson.ca/senate/current/pol60.pdf

1 OBJECTIVES OF THE LAB

1. Installing SimpleScalar

2. Measure ISA Statistics (frequency of each type and cost associated)

3. Running Different Applications

4. Measure Application Performance

5. Generate Traces for the Application

2 WHAT IS SIMPLESCALAR ?

SimpleScalar is an architectural simulator which simulates the behavior of a computing device. We can use SimpleScalar to
leverage faster, more flexible software development cycle. It can be used to study the issues and performance of any software
code and design more efficient compilers that exploit pipelining features.

Figure 2.1: Black box analogy of SimpleScalar simulator. [1]

Different executables of SimpleScalar are available to execute as follows:

Figure 2.2: Different SimpleScalar executables which emulate different types of Instruction Set Architecture (ISA). Sim-
Outorder is the most complex ISA emulator with support for out-of-order instruction execution.[1]

2

Figure 2.3: Pipeline for sim-outorder emulator which supports out of order intruction execution.[2]

3 INSTALLING SIMPLESCALAR

Typing the following command installs Simple Scalar Version 3.0

1 >> S S c a l a r s e t u p

4 MEASURING STATISTICS

Execution of the executable simulates run of the program and reports several useful characteristics.

4.1 COMPILING THE CODE TO RUN

1. The C code which is to be executed on the simulator can be compiled using the compiler at /SimpleScaler −
3.0d/bin/sslittle− na− sstrix− gcc. The command to generate an object file for the code is:

1 ~ / S i m p l e S c a l e r −3.0d >> . / b i n / s s l i t t l e −na−s s t r i x −gcc −c ~ / Documents / coe818 / bench1 . c

2. To generate an executable to run using the simulator, following command is typed:

1 ~ / S i m p l e S c a l e r −3.0d >> . / b i n / s s l i t t l e −na−s s t r i x −gcc ~ / Documents / coe818 / bench1 . c

This will generate a *.out file which is executable using the SimpleScaler simulator.

3. To execute the a.out executable, following command is typed:

1 ~ / S i m p l e S c a l e r −3.0d >> . / s imples im −3.0 / sim−s a f e a . o u t

4.2 APPLICATION 1: DHRYSTONE PROGRAM

Dhrystone program is an old benchmark which was written in 1984 by Reinhold Weicker and measured integer perfor-
mance of processors and compilers. Since then, it has been replaced by more complex benchmarking programs such as
SPEC and CoreMark.

3

Dhrystone evaluates general-purpose integer performance of the DUT (Device Under Test). However it does not resemble
any real-life program, is very susceptible to compiler optimizations, and due to the small code size, it may fit in the instruction
cache of a modern CPU hence diluting instruction fetch performance.

Following are the results from running this benchmark program:

1 sim : ∗∗ s i m u l a t i o n s t a t i s t i c s ∗∗
s im_num_insn 533507945 # t o t a l number o f i n s t r u c t i o n s e x e c u t e d

3 s im_num_refs 215504362 # t o t a l number o f l o a d s and s t o r e s e x e c u t e d
s i m _ e l a p s e d _ t i m e 19 # t o t a l s i m u l a t i o n t ime i n s e c o n d s

5 s i m _ i n s t _ r a t e 28079365.5263 # s i m u l a t i o n speed (i n i n s t s / s e c)
l d _ t e x t _ b a s e 0 x00400000 # program t e x t (code) segment base

7 l d _ t e x t _ s i z e 28080 # program t e x t (code) s i z e i n b y t e s
l d _ d a t a _ b a s e 0 x10000000 # program i n i t i a l i z e d d a t a segment base

9 l d _ d a t a _ s i z e 11876 # program i n i t ’ ed ‘ . da t a ’ and u n i n i t ’ ed ‘ . bss ’ s i z e i n b y t e s
l d _ s t a c k _ b a s e 0 x 7 f f f c 0 0 0 # program s t a c k segment base (h i g h e s t a d d r e s s i n s t a c k)

11 l d _ s t a c k _ s i z e 16384 # program i n i t i a l s t a c k s i z e
l d _ p r o g _ e n t r y 0 x00400140 # program e n t r y p o i n t (i n i t i a l PC)

13 l d _ e n v i r o n _ b a s e 0 x 7 f f f 8 0 0 0 # program e n v i r o n m e n t base a d d r e s s a d d r e s s
l d _ t a r g e t _ b i g _ e n d i a n 0 # t a r g e t e x e c u t a b l e end ian−ness , non−z e r o i f b i g e n d i a n

15 mem. p a g e _ c o u n t 17 # t o t a l number o f pages a l l o c a t e d
mem. page_mem 68k # t o t a l s i z e o f memory pages a l l o c a t e d

17 mem. p t a b _ m i s s e s 19 # t o t a l f i r s t l e v e l page t a b l e m i s s e s
mem. p t a b _ a c c e s s e s 2565216032 # t o t a l page t a b l e a c c e s s e s

19 mem. p t a b _ m i s s _ r a t e 0 .0000 # f i r s t l e v e l page t a b l e miss r a t e

4.3 APPLICATION 2: HYDRO FRAGMENT PROGRAM

This benchmark program contains 1 normal for loop which iterates 1000 times and 2 nested for loops which loops 1000×
1000 = 1, 000, 000 times. In total, the loop C instructions to execute are 2× (1, 000, 000) + 1, 000 = 2, 001, 000 times.

Since this C program works with doubles and integers, floating point and integer functionality of the DUT (Device Under
Test) are evaluated.

Following are the results from running this benchmark program:

1 sim : ∗∗ s i m u l a t i o n s t a t i s t i c s ∗∗
s im_num_insn 809943 # t o t a l number o f i n s t r u c t i o n s e x e c u t e d

3 s im_num_refs 255435 # t o t a l number o f l o a d s and s t o r e s e x e c u t e d
s i m _ e l a p s e d _ t i m e 1 # t o t a l s i m u l a t i o n t ime i n s e c o n d s

5 s i m _ i n s t _ r a t e 809943.0000 # s i m u l a t i o n speed (i n i n s t s / s e c)
l d _ t e x t _ b a s e 0 x00400000 # program t e x t (code) segment base

7 l d _ t e x t _ s i z e 24096 # program t e x t (code) s i z e i n b y t e s
l d _ d a t a _ b a s e 0 x10000000 # program i n i t i a l i z e d d a t a segment base

9 l d _ d a t a _ s i z e 4096 # program i n i t ’ ed ‘ . da t a ’ and u n i n i t ’ ed ‘ . bss ’ s i z e i n b y t e s
l d _ s t a c k _ b a s e 0 x 7 f f f c 0 0 0 # program s t a c k segment base (h i g h e s t a d d r e s s i n s t a c k)

11 l d _ s t a c k _ s i z e 16384 # program i n i t i a l s t a c k s i z e
l d _ p r o g _ e n t r y 0 x00400140 # program e n t r y p o i n t (i n i t i a l PC)

13 l d _ e n v i r o n _ b a s e 0 x 7 f f f 8 0 0 0 # program e n v i r o n m e n t base a d d r e s s a d d r e s s
l d _ t a r g e t _ b i g _ e n d i a n 0 # t a r g e t e x e c u t a b l e end ian−ness , non−z e r o i f b i g e n d i a n

15 mem. p a g e _ c o u n t 13 # t o t a l number o f pages a l l o c a t e d
mem. page_mem 52k # t o t a l s i z e o f memory pages a l l o c a t e d

17 mem. p t a b _ m i s s e s 13 # t o t a l f i r s t l e v e l page t a b l e m i s s e s
mem. p t a b _ a c c e s s e s 4102180 # t o t a l page t a b l e a c c e s s e s

19 mem. p t a b _ m i s s _ r a t e 0 .0000 # f i r s t l e v e l page t a b l e miss r a t e

4

4.4 APPLICATION 3: DHRYSTONE PROGRAM

This program is the same as application 1 because the code is similar. However, there are very slight changes in the
simulation results.

Following are the results from running this benchmark program:
1 sim : ∗∗ s i m u l a t i o n s t a t i s t i c s ∗∗

s im_num_insn 533507901 # t o t a l number o f i n s t r u c t i o n s e x e c u t e d
3 s im_num_refs 215504359 # t o t a l number o f l o a d s and s t o r e s e x e c u t e d

s i m _ e l a p s e d _ t i m e 19 # t o t a l s i m u l a t i o n t ime i n s e c o n d s
5 s i m _ i n s t _ r a t e 28079363.2105 # s i m u l a t i o n speed (i n i n s t s / s e c)

l d _ t e x t _ b a s e 0 x00400000 # program t e x t (code) segment base
7 l d _ t e x t _ s i z e 28080 # program t e x t (code) s i z e i n b y t e s

l d _ d a t a _ b a s e 0 x10000000 # program i n i t i a l i z e d d a t a segment base
9 l d _ d a t a _ s i z e 11876 # program i n i t ’ ed ‘ . da t a ’ and u n i n i t ’ ed ‘ . bss ’ s i z e i n b y t e s

l d _ s t a c k _ b a s e 0 x 7 f f f c 0 0 0 # program s t a c k segment base (h i g h e s t a d d r e s s i n s t a c k)
11 l d _ s t a c k _ s i z e 16384 # program i n i t i a l s t a c k s i z e

l d _ p r o g _ e n t r y 0 x00400140 # program e n t r y p o i n t (i n i t i a l PC)
13 l d _ e n v i r o n _ b a s e 0 x 7 f f f 8 0 0 0 # program e n v i r o n m e n t base a d d r e s s a d d r e s s

l d _ t a r g e t _ b i g _ e n d i a n 0 # t a r g e t e x e c u t a b l e end ian−ness , non−z e r o i f b i g e n d i a n
15 mem. p a g e _ c o u n t 17 # t o t a l number o f pages a l l o c a t e d

mem. page_mem 68k # t o t a l s i z e o f memory pages a l l o c a t e d
17 mem. p t a b _ m i s s e s 19 # t o t a l f i r s t l e v e l page t a b l e m i s s e s

mem. p t a b _ a c c e s s e s 2565215844 # t o t a l page t a b l e a c c e s s e s
19 mem. p t a b _ m i s s _ r a t e 0 .0000 # f i r s t l e v e l page t a b l e miss r a t e

5 TRACES FOR APPLICATIONS

Sim-outorder produces detailed history of all instructions executed including instruction stage transitions.

Figure 5.1: Reading and analyzing trace files. [1]

Traces are generated by using the following command:
1 sim−o u t o r d e r −p t r a c e FOO. t r c :1000 t e s t −math

To view the trace file, following command is run to instantiate pipeview program so that the trace file is parsed and is
displayed in a proper manner:

1 p i p e v i e w . p l FOO. t r c

5

5.1 APPLICATION 1: DHRYSTONE

Complete trace files are not attached due to huge size. But cycles which are important are given below:

Figure 5.2: Generated trace file for application 1. Where it clearly be seen that the instructions are fetched, decoded, exe-
cuted, and then data is written back.

5.2 APPLICATION 2: HYDRO FRAGMENT

Complete trace files are not attached due to huge size. But cycles which are important are given below:

Figure 5.3: Generated trace file for application 2.

6

Figure 5.4: Command line output when using pipeview program to see trace files.

5.3 APPLICATION 3: DHRYSTONE

Complete trace files are not attached due to huge size. But cycles which are important are given below:

Figure 5.5: Generated trace file for application 3.

7

Figure 5.6: Command line output when using pipeview program to see trace files.

6 CONCLUSIONS

1. Since, there were no memory page misses in any of the applications tested, it is possible that the programs were too
short to account for cache miss rate which is evident and plays a vital role in real-world programs.

2. Speed of the simulation or instructions executed over time reduced when floating point operations are added in appli-
cation 2 (Hydro Fragment Program). This is because of additional pipeline hazards introduced due to floating point
unit operations.

3. Program size for applications 1 and 3 is 28K while for application 2 is 24K. Both of these programs are small enough
to fit inside any modern CPU’s instruction cache. Therefore results obtained from these program might not be close to
real hardware.

4. Percentage of load/stores in different applications according to formula % OfLoad/Store = sim_num_refs
sim_num_insn × 100%

is given in the figure below:

Figure 6.1: Application 2 requires less load/store instructions compared to Dhrystone applications.

5. Since applications 1 and 3 require more load/store instructions than application 2, it is more feasible to use accumulator
based architecture. However, this will increase the memory bandwidth required by the processor. If not many cores are
attached with the memory access bus, then it is a good option to use accumulator based ISA for dhrystone applications.

8

REFERENCES

[1] S. LLC. (2001, December) Simplescalar tutorial slides. SimpleScalar LLC. [Online]. Available: http://www.
simplescalar.com/docs/simple_tutorial_v4.pdf

[2] D. B. T. M. Austin. (1997) The simplescalar tool set, version 2.0. SimpleScalar LLC. 2395 Timbercrest Court, Ann
Arbor, MI 48105. [Online]. Available: http://www.simplescalar.com/docs/users_guide_v2.pdf

9

http://www.simplescalar.com/docs/simple_tutorial_v4.pdf
http://www.simplescalar.com/docs/simple_tutorial_v4.pdf
http://www.simplescalar.com/docs/users_guide_v2.pdf

	Objectives of the lab
	What is SimpleScalar ?
	Installing SimpleScalar
	Measuring Statistics
	Compiling the Code to Run
	Application 1: Dhrystone Program
	Application 2: Hydro Fragment Program
	Application 3: Dhrystone Program

	Traces for Applications
	Application 1: Dhrystone
	Application 2: Hydro Fragment
	Application 3: Dhrystone

	Conclusions

