RYERSON UNIVERSITY

Faculty of Engineering, Architecture, and Science

Department of Electrical and Computer Engineering

Course Number

EE&207

Course Title

High Performance Computer System Design

Semester/Year

Winter/2016

] Instructor

| Dr. Nagi N. Mekhiel |

Lab No. 2

Assignment Title \ Evaluating Performance of Computer Systems

Submission Date | 12" February 2016
Due Date 12" February 2016
Student Name Muhammad Obaidullah
Student ID. 500671408

Signature* y

*By signing above you attest that you have contributed to this written lab
report and confirm that all work you have contributed to this lab report
is your own work. Any suspicion of copying or plagiarism in this work
will result in an investigation of Academic Misconduct and may result in a "0"

on the work, an "F" in the course, or possibly more severe penalties,
as well as a Disciplinary Notice on your academic record under the
Student Code of Academic Conduct, which can be found online at:
www.ryerson.ca/senate/current/pol60.pdf.

www.ryerson.ca/senate/current/pol60.pdf

1 OBJECTIVES OF THE LAB

1. Evaluating performance of a computer system with SimpleScalar.
2. Using Benchmarks.

3. Measure performance of real computer and compare its performance to a simulator based system that uses same
parameters (cache, speed, bus bandwidth).

2 SELECTING BENCHMARKING APPLICATIONS

2.1 APPLICATION 1: DHRYSTONE

Dhrystone program is an old benchmark which was written in 1984 by Reinhold Weicker and measured integer perfor-
mance of processors and compilers. Since then, it has been replaced by more complex benchmarking programs such as
SPEC and CoreMark. [1]

Dhrystone evaluates general-purpose integer performance of the DUT (Device Under Test). However it does not resemble
any real-life program, is very susceptible to compiler optimizations, and due to the small code size, it may fit in the instruction
cache of a modern CPU hence diluting instruction fetch performance.[2]]

2.2 APPLICATION 2: LINPACK

Linpack benchmark was introduced by Jack Dongarra. This benchmarks tries to solve dense system of linear equations.
[3] The benchmark is designed to solve system of linear equations in the form of Ax = b with three different sizes: 100 x 100
problem (inner loop), 1000 x 1000 problem (three loop complete program), and a scalable parallel problem. Linpack was
actually ported from Fortan programming language into c so that it can benchmark more variety of computers.

2.2.1 VERSIONS OF LINPACK BENCHMARK

There are pre-processor symbols in the code which can be defined in order to compile 4 different versions of the code.

1. Single Precision with Rolled loop (SP-RL): The first version which can be used as benchmark involves solving
several floating-point single precision linear equations without unrolling the loop. This version is supposed to be less
computationally intensive than double precision linear equations. Rolled loop means 1 linear equation per iteration.
This means that after each equation is solved, then the iteration is incremented.

2. Double Precision with Rolled loop (DP-RL): As the name suggests, double precision (64-bits) variable holds twice
the bits of a float variable (32-bits). This version is more computationally intensive than single precision because of
the double accuracy in calculating values and handling 64-bit values. Since the loop is rolled, this means that after
each equation is solved, then the iteration is incremented. 1 linear equation per iteration.

3. Single Precision with Un-rolled loop (SP-UL): The third version which can be used as benchmark involves solving
several floating-point single precision linear equations and taking advantage of unrolling the loop. This means that
several equations are being solved in a single loop iteration. This reduces the control overhead from the instructions
and reduces the total number of instructions to execute.

4. Double Precision with Un-rolled loop (DP-UL): As the loop is unrolled, several control hazards and the latency due
to control hazards is reduced. So this version of code might take less time to execute compared to rolled loop double
precision version. However, this version is more computationally intensive than single precision because of the double
accuracy in calculating values and handling 64-bit values. The depth of unrolling the loop can also be controlled in
the ¢ program using pre-processor symbols.

2.2.2 EFFECT OF UNROLLING THE LOOP

Following is a rolled loop:

for (int i = 0; 1 < 10; i++)
{

y[i] = y[i] + alphaxx[i];
}

Following is the loop unrolled 4 times. This reduces the control overhead from the instructions and reduces the total number
of instructions to execute. This is achieved by setting the unrolling depth to 4 in the linpack.c file:

for (int i = 0; i < 10; i =1 + 4)
{
y[i] = y[i] + alphaxx[i];

yli+1] = y[i+1] + alphaxx[i+1];
yli+2] = y[i+2] + alphaxx[i+2];
y[i+3] = y[i+3] + alphaxx[i+3];

2.3 APPLICATION 3: WHETSTONE

Whetstone is a statistics based synthetic program which is widely used for benchmarking CPUs and parallel CPU clusters.
Results obtained from running Whetstone program were written in terms of Millions of Whetstone Instructions Per Second
(MWIPS). The program iterates through many instructions and performs complex trigonometric and root operations to test
the full potential of the Device Under Test (DUT). It each main application loop, it goes through several modules which
include following:

1. Simple Identifiers: Continuously assigns integer values to variables iteratively.

2. Array Elements: Calculates array elements by performing operations on other array elements.
3. Array as parameters: Passes an array to a function as a parameter several times.

4. Conditional Jumps: Does couple of conditional jumps (if statements) based on an integer value.

5. Integer Arithmetic: Does complex integer calculations involving addition, subtraction, multiplication, and division.
Also involves some array values into calculations.

6. Trigonometric Functions: Calls Sin, Cos, and Tan functions repeatedly.

7. Procedure Calls: Calls a function several times and passes values by value and reference as well.
8. Array References: Shuffles 3 array elements around several times.

9. Integer Arithmetic: Contains several simple integer addition and subtractions.

10. Standard Functions: Performs several square root, exponential, and logarithmic functions on a dummy variable.

3 BENCHMARKING PROCEDURE

3.1 RUNNING CODE ON SIMULATOR

In order to benchmark the PC by running the same program on PC, a profiling tool is needed. Fortunately, GNU tool-chain
has a built-in profiling tool called as gprof. In order profile a c code (whetstone.c) on Linux, following steps are taken.

1. Compile the program using simpleScalar gcc compiler.

1 ~/SScalar3.0d >> ./bin/sslitlle —na—sstrix —gcc benchmark—codes/uncompiled/linpack.c

This will generate a.out file which is executable using the SimpleScaler simulator.

2. Run the program

1 ~/SScalar3.0d >> ./simple—sim —3.0/sim—safe a.out

3. Traces are generated by using the following command:

1 sim—outorder —ptrace FOO. trc :1000 test—math

4. To view the trace file, following command is run to instantiate pipeview program so that the trace file is parsed and is
displayed in a proper manner:

1 pipeview . pl FOO. trc

3.2 RUNNING CODE ON PC

In order to benchmark the PC by running the same program on PC, a profiling tool is needed. Fortunately, GNU tool-chain
has a built-in profiling tool called as gprof. In order profile a c code (whetstone.c) on Linux, following steps are taken.

1. Compile the program using the "-pg" option

1 ~/SScalar3.0d >> gcc —Wall —pg —Im benchmark—codes/uncompiled/whetstone.c —o benchmark—
codes/compiled—pc/whetstone

2. Run the program

1 ~/SScalar3.0d >> ./benchmark—codes/compiled—pc/whetsone

3. Generate the output file and save statistics

1 ~/SScalar3.0d >> gprof whetstone whetstone—gmon.out > whetstone—results . txt

This will run the executable and store the results in the text file whetstone-results.txt

4 RESULTS

4.1 APPLICATION 1: DHRYSTONE

4.1.1 PC RESULTS

Each sample counts as 0.01 seconds.
% cumulative self self total

3| time seconds seconds calls ms/call ms/call name
25.07 0.02 0.02 500000 0.00 0.00 Procl
18.80 0.04 0.02 1500000 0.00 0.00 Proc7
12.54 0.05 0.01 1500000 0.00 0.00 Funcl
12.54 0.06 0.01 500000 0.00 0.00 Proc3
12.54 0.07 0.01 500000 0.00 0.00 Proc8
12.54 0.08 0.01 1 10.03 80.23 ProcO
6.27 0.08 0.01 500000 0.00 0.00 Procé6
0.00 0.08 0.00 500000 0.00 0.00 Func2
0.00 0.08 0.00 500000 0.00 0.00 Func3

310.00 0.08 0.00 500000 0.00 0.00 Proc2
0.00 0.08 0.00 500000 0.00 0.00 Proc4
0.00 0.08 0.00 500000 0.00 0.00 Proc5

4.1.2 SIMULATOR RESULTS
sim: #% simulation statistics sx
sim_num_insn 533507945 # total number of instructions executed

3l sim_num_refs 215504362 # total number of loads and stores executed
sim_elapsed_time 19 # total simulation time in seconds
sim_inst_rate 28079365.5263 # simulation speed (in insts/sec)
I1d_text_base 0x00400000 # program text (code) segment base
Id_text_size 28080 # program text (code) size in bytes
ld_data_base 0x10000000 # program initialized data segment base
1d_data_size 11876 # program init ed ‘.data’ and uninit’ed ‘.bss’ size in bytes
Id_stack_base 0x7fffc000 # program stack segment base (highest address in stack)
1d_stack_size 16384 # program initial stack size
ld_prog_entry 0x00400140 # program entry point (initial PC)

31 1d_environ_base 0x7fff8000 # program environment base address address
1d_target_big_endian 0 # target executable endian—ness, non—zero if big endian
mem. page_count 17 # total number of pages allocated
mem. page_mem 68k # total size of memory pages allocated
mem. ptab_misses 19 # total first level page table misses
mem. ptab_accesses 2565216032 # total page table accesses
mem. ptab_miss_rate 0.0000 # first level page table miss rate

4.2 APPLICATION 2A: LINPACK - SINGLE PRECISION WITH ROLLED LooP (SP-RL)

4.2.1 PC RESULTS

Each sample counts as 0.01

% cumulative

time
100.06
0.00
00
.00
.00
.00
00
00
.00
.00

OO OO OO OO

seconds

0.03
.03
03
.03
.03
.03
03
03
.03
.03

[=loNoBoBoNoRoloNe]

self
seconds
0.03

.00
00
.00
.00
.00
00
00
.00
.00

[eleoNeoBoloNeoRoBoX=]

seconds .

calls
133874
2574
2574
72
27
26
26
8
1
1

self

ms

/call
0.00
.00
00
.00
.00
.00
00
00
.00
.00

oo e @@ e

total
ms/ call

0.00

.00
00
.00
.00
.11
04
.00
.00
.00

SO OO~ OO OO

name
daxpy

dscal
idamax
second
matgen
dgefa

dgesl
print_timer
dmxpy
epslon

4.2.2 SIMULATOR RESULTS

sim: x% simulation
sim_num_insn
sim_num_refs
sim_elapsed_time
sim_inst_rate
ld_text_base
Id_text_size
1d_data_base
ld_data_size
Id_stack_base
1d_stack_size
ld_prog_entry
ld_environ_base
ld_target_big_endian
mem. page_count

mem. page_mem

mem. ptab_misses

mem. ptab_accesses
mem. ptab_miss_rate

statistics

*ok
342182095 # total number of instructions executed
143969999 # total number of loads and stores executed
13 # total simulation time in seconds
26321699.6154 # simulation speed (in insts/sec)
0x00400000 # program text (code) segment base
97776 # program text (code) size in bytes
0x10000000 # program initialized data segment base
332292 # program init ed ‘.data’ and uninit’’ed °‘.bss’ size in bytes
0x7fffc000 # program stack segment base (highest address in stack)
16384 # program initial stack size
0x00400140 # program entry point (initial PC)
0x7fff8000 # program environment base address address
0 # target executable endian—ness, non—zero if big endian
78 # total number of pages allocated
312k # total size of memory pages allocated
3101 # total first level page table misses
1658370601 # total page table accesses
0.0000 # first level page table miss rate

4.3 APPLICATION 2B: LINPACK - DOUBLE PRECISION WITH ROLLED LooP (DP-RL)

4.3.1 PC RESULTS

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls us/call wus/call name
50.03 0.01 0.01 133874 0.07 0.07 daxpy
50.03 0.02 0.01 26 384.86 754.84 dgefa
0.00 0.02 0.00 2574 0.00 0.00 dscal
0.00 0.02 0.00 2574 0.00 0.00 idamax
0.00 0.02 0.00 72 0.00 0.00 second
0.00 0.02 0.00 27 0.00 0.00 matgen
0.00 0.02 0.00 26 0.00 14.87 dgesl
0.00 0.02 0.00 8 0.00 0.00 print_timer
0.00 0.02 0.00 1 0.00 0.00 dmxpy
0.00 0.02 0.00 1 0.00 0.00 epslon

4.3.2 SIMULATOR RESULTS
sim: =x% simulation statistics x
sim_num_insn 329275681 # total number of instructions executed
sim_num_refs 139015684 # total number of loads and stores executed
sim_elapsed_time 12 # total simulation time in seconds
sim_inst_rate 27439640.0833 # simulation speed (in insts/sec)
1d_text_base 0x00400000 # program text (code) segment base
Id_text_size 96896 # program text (code) size in bytes
Id_data_base 0x10000000 # program initialized data segment base
ld_data_size 655012 # program init ’ed ‘.data’ and uninit’ed ‘.bss’ size in bytes
Id_stack_base 0x7fffc000 # program stack segment base (highest address in stack)
1d_stack_size 16384 # program initial stack size
ld_prog_entry 0x00400140 # program entry point (initial PC)

3l 1d_environ_base 0x7fff8000 # program environment base address address
1d_target_big_endian 0 # target executable endian—ness, non—zero if big endian
mem. page_count 115 # total number of pages allocated
mem. page_mem 460k # total size of memory pages allocated

17| mem. ptab_misses 10516 # total first level page table misses
mem. ptab_accesses 1672529376 # total page table accesses
l9/mem. ptab_miss_rate 0.0000 # first level page table miss rate

4.4 APPLICATION 2C: LINPACK - SINGLE PRECISION WITH UN-ROLLED LooP (SP-UL)

4.4.1 PC RESULTS

i| Each sample counts as 0.01 seconds.
% cumulative self self total

3| time seconds seconds calls wus/call wus/call name
100.06 0.02 0.02 133874 0.15 0.15 daxpy

51 0.00 0.02 0.00 2574 0.00 0.00 dscal
0.00 0.02 0.00 2574 0.00 0.00 idamax

71 0.00 0.02 0.00 72 0.00 0.00 second
0.00 0.02 0.00 27 0.00 0.00 matgen

91 0.00 0.02 0.00 26 0.00 739.94 dgefa
0.00 0.02 0.00 26 0.00 29.75 dgesl

111 0.00 0.02 0.00 8 0.00 0.00 print_timer
0.00 0.02 0.00 1 0.00 0.00 dmxpy

131 0.00 0.02 0.00 1 0.00 0.00 epslon

4.4.2 SIMULATOR RESULTS

i|sim: %% simulation statistics s*x
sim_num_insn 303113503 # total number of instructions executed
3| sim_num_refs 118762050 # total number of loads and stores executed
sim_elapsed_time 11 # total simulation time in seconds
s| sim_inst_rate 27555773.0000 # simulation speed (in insts/sec)
Id_text_base 0x00400000 # program text (code) segment base
7| 1d_text_size 100816 # program text (code) size in bytes
ld_data_base 0x10000000 # program initialized data segment base
9| ld_data_size 332308 # program init 'ed ‘.data’ and uninit’ed ‘.bss’ size in bytes
1d_stack_base 0x7fffc000 # program stack segment base (highest address in stack)
111 1d_stack_size 16384 # program initial stack size
ld_prog_entry 0x00400140 # program entry point (initial PC)
131 1d_environ_base 0x7fff8000 # program environment base address address
ld_target_big_endian 0 # target executable endian—ness, non—zero if big endian
I5|mem. page_count 77 # total number of pages allocated
mem. page_mem 308k # total size of memory pages allocated
17| mem. ptab_misses 110080 # total first level page table misses
mem. ptab_accesses 1451588619 # total page table accesses
l9/mem. ptab_miss_rate 0.0001 # first level page table miss rate

4.5 APPLICATION 2D: LINPACK - DOUBLE PRECISION WITH UN-ROLLED LooP (DP-UL)

4.5.1 PC RESULTS

i| Each sample counts as 0.01 seconds.
% cumulative self self total
3| time seconds seconds calls wus/call wus/call name
100.06 0.02 0.02 133874 0.15 0.15 daxpy
51 0.00 0.02 0.00 2574 0.00 0.00 dscal
0.00 0.02 0.00 2574 0.00 0.00 idamax
71 0.00 0.02 0.00 72 0.00 0.00 second

0.00 0.02 0.00 27 0.00 0.00 matgen

0.00 0.02 0.00 26 0.00 739.93 dgefa

0.00 0.02 0.00 26 0.00 29.75 dgesl

0.00 0.02 0.00 8 0.00 0.00 print_timer
0.00 0.02 0.00 1 0.00 0.00 dmxpy

0.00 0.02 0.00 1 0.00 0.00 epslon

4.5.2 SIMULATOR RESULTS

sim: ** simulation statistics sx*

sim_num_insn 299999180 # total number of instructions executed

sim_num_refs 117945956 # total number of loads and stores executed
sim_elapsed_time 12 # total simulation time in seconds

sim_inst_rate 24999931.6667 # simulation speed (in insts/sec)

Id_text_base 0x00400000 # program text (code) segment base

Id_text_size 99920 # program text (code) size in bytes

ld_data_base 0x10000000 # program initialized data segment base

ld_data_size 655028 # program init 'ed ‘.data’ and uninit’ed ‘.bss’ size in bytes
Id_stack_base 0x7fffc000 # program stack segment base (highest address in stack)
Id_stack_size 16384 # program initial stack size

ld_prog_entry 0x00400140 # program entry point (initial PC)

Id_environ_base 0x7fff8000 # program environment base address address
ld_target_big_endian 0 # target executable endian—ness, non—zero if big endian
mem. page_count 157 # total number of pages allocated

mem. page_mem 628k # total size of memory pages allocated

mem. ptab_misses 5061 # total first level page table misses

mem. ptab_accesses 1515660884 # total page table accesses

mem. ptab_miss_rate 0.0000 # first level page table miss rate

4.6 APPLICATION 3: WHETSTONE

4.6.1 PC RESULTS

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ns/call ns/call name
60.11 0.09 0.09 8091000 11.14 11.14 P3
26.72 0.13 0.04 main
6.68 0.14 0.01 5544000 1.81 1.81 PO
6.68 0.15 0.01 126000 79.52 79.52 PA

4.6.2 SIMULATOR RESULTS

sim: *x% simulation statistics xx

sim_num_insn 155673615 # total number of instructions executed

sim_num_refs 45353172 # total number of loads and stores executed
sim_elapsed_time 5 # total simulation time in seconds

sim_inst_rate 31134723.0000 # simulation speed (in insts/sec)

I1d_text_base 0x00400000 # program text (code) segment base

Id_text_size 91056 # program text (code) size in bytes

ld_data_base 0x10000000 # program initialized data segment base

1d_data_size 12288 # program init ed ‘.data’ and uninit’ed ‘.bss’ size in bytes
Id_stack_base 0x7fffc000 # program stack segment base (highest address in stack)
Id_stack_size 16384 # program initial stack size

1d_prog_entry 0x00400140 # program entry point (initial PC)

ld_environ_base 0x7fff8000 # program environment base address address
Id_target_big_endian 0 # target executable endian—ness, non—zero if big endian
s|mem. page_count 33 # total number of pages allocated

mem. page_mem 132k # total size of memory pages allocated

mem. ptab_misses 34 # total first level page table misses

mem. ptab_accesses 739290943 # total page table accesses

mem. ptab_miss_rate 0.0000 # first level page table miss rate

5 DISCUSSIONS

5.1 MEMORY ALLOCATION

To compare how much memory allocation each application need, following figure is provided:

of Memory Pages Allocated
180
160
140
120
100
80

60

40

z N
o

Dhrystone Linpack Linpack Linpack Linpack Whetstone
SP-RL DP-RL SP-UL DP-UL

m # of Memory Pages Allocated

o

Figure 5.1: Comparison of number of memory pages being allocated in different applications.

Since Linpack DP-UL has to store four times the 64-bit double precision value because of an un-rolled loop, it has the
maximum memory being allocated while rolled loop DP-RL does not require much memory for single iteration.
5.2 NUMBER OF INSTRUCTIONS

Number of instruction for all these application is given in the figure below: When a loop is unrolled, the number control
instructions reduce and therefore there is a decrease in overall number of instruction from DP-RL to DP-UL.

of Instructions (Millions)
600

500

400

300
20
10 I

Dhrystone Linpack Linpack Linpack Linpack Whetstone
SP-RL DP-RL SP-UL DP-UL

m # of Instructions (Millions)

=)

=)

=)

Figure 5.2: Comparison of number of instructions in different applications.

5.3 MEMORY BANDWIDTH

sim_num_refs

Percentage of load/stores in different applications according to formula % O f Load/ Store = Zo=rmn=rsls

in the figure below:

x 100% is given

% of Load/Store
45

40
3
3
2
2
1
1
0

Dhrystone Linpack Linpack Linpack Linpack Whetstone
SP-RL DP-RL SP-UL DP-UL

m % of Load/Store

Ul © U1 © U1 O Ul

Figure 5.3: Comparison of Load/Store instructions in different applications.

5.4 PC vSs SIMULATOR SPEED

CPU speedup is calculated as:
t .
%Speed — Upch = “simulator (5.1)
tcpu

For different applications, the speedup is given in the figure below:

CPU vs Simulator Speed Up
700

600
500
400
300
200
100

Dhrystone Linpack Linpack Linpack Linpack Whetstone
SP-RL DP-RL SP-UL DP-UL

Intel CPU vs Simulator Speed Up

Figure 5.4: Comparison of CPU speedup in different applications.

6 CONCLUSION

1. Intel CPUs are more efficient in handling floating point and double precision variables as it can be seen from the
speedup figure that the most speed-up is while performing double precession operations on an unrolled loop.

2. Since the CPU is multi-core, some advantage comes from intelligently scheduling the instructions for parallel process-
ing on multiple CPU cores.

3. Overall on average, CPU proved to be about 400 times more faster than the simulator.

4. Unrolling the loop helps significantly in reducing the memory bandwidth with the help of burst data request using AXI
or AMBA or similar bus protocol.

REFERENCES

[1] S. LLC. (2001, December) Simplescalar tutorial slides. SimpleScalar LLC. [Online]. Available: http://www.
simplescalar.com/docs/simple_tutorial_v4.pdf

[2] D. B. T. M. Austin. (1997) The simplescalar tool set, version 2.0. SimpleScalar LLC. 2395 Timbercrest Court, Ann
Arbor, MI 48105. [Online]. Available: http://www.simplescalar.com/docs/users_guide_v2.pdf

[3] J.J. Dongarra, P. Luszczek, and A. Petitet. (2001, December) The linpack benchmark: Past, present, and future. Online.
Netlib Repository at UTK and ORNL. [Online]. Available: http://www.netlib.org/utk/people/JackDongarra/PAPERS/
hpl.pdf

http://www.simplescalar.com/docs/simple_tutorial_v4.pdf
http://www.simplescalar.com/docs/simple_tutorial_v4.pdf
http://www.simplescalar.com/docs/users_guide_v2.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/hpl.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/hpl.pdf

	Objectives of the lab
	Selecting Benchmarking Applications
	Application 1: Dhrystone
	Application 2: Linpack
	Versions of Linpack benchmark
	Effect of Unrolling the loop

	Application 3: Whetstone

	Benchmarking Procedure
	Running Code on Simulator
	Running Code on PC

	Results
	Application 1: Dhrystone
	PC Results
	Simulator Results

	Application 2A: Linpack - Single Precision with Rolled Loop (SP-RL)
	PC Results
	Simulator Results

	Application 2B: Linpack - Double Precision with Rolled Loop (DP-RL)
	PC Results
	Simulator Results

	Application 2C: Linpack - Single Precision with Un-rolled Loop (SP-UL)
	PC Results
	Simulator Results

	Application 2D: Linpack - Double Precision with Un-rolled Loop (DP-UL)
	PC Results
	Simulator Results

	Application 3: Whetstone
	PC Results
	Simulator Results

	Discussions
	Memory Allocation
	Number of Instructions
	Memory bandwidth
	PC vs Simulator Speed

	Conclusion

