
Faculty of Engineering, Architecture, and Science

Department of Electrical and Computer Engineering

Course Number EE8207
Course Title High Performance Computer System Design
Semester/Year Winter/2016

Instructor Dr. Nagi N. Mekhiel

Lab No. 3
Assignment Title Data Hazards in MIPS Pipelines

Submission Date 11th March 2016
Due Date 11th March 2016

Student Name Muhammad Obaidullah
Student ID. 500671408

Signature*

*By signing above you attest that you have contributed to this written lab
report and confirm that all work you have contributed to this lab report
is your own work. Any suspicion of copying or plagiarism in this work
will result in an investigation of Academic Misconduct and may result in a "0"
on the work, an "F" in the course, or possibly more severe penalties,
as well as a Disciplinary Notice on your academic record under the
Student Code of Academic Conduct, which can be found online at:
www.ryerson.ca/senate/current/pol60.pdf.

1

www.ryerson.ca/senate/current/pol60.pdf

1 OBJECTIVES OF THE LAB

1. Analyzing MIPS Pipeline using WINMIPS Simulator.

2. Demonstrate Data Hazards.

3. Performance cost of Data Hazards.

4. Reduce penalty of Data Hazards

2 DOWNLOADING & SETTING UP WINMIPS64

2.1 INSTALLATION

To install WinMIPS64, following steps were taken:

1. WinMIPS64 was downloaded from http://indigo.ie/~mscott/ [1]

2. After downloading, winmips64.exe file was opened.

3. A folder name "Codes" was created for saving all codes and running in the same directory.

2.2 ANALYSES

1. A test assembler program was written as follows:

1 . d a t a
A: . word 10

3 B : . word 8
C : . word 0

5

. t e x t
7 main :

l d r4 ,A(r0)
9 l d r5 , B(r0)

dadd r3 , r4 , r5
11 sd r3 , C(r0)

h a l t

2. .data signifies the start of data segment where we can set some data in the memory before the execution of the program
starts.

3. .text signifies the start of text segment where we write our program.

4. .main signifies the start of main program.

5. The test program takes two numbers and adds them.

6. By selecting File > Open, we can run the assembly code and by pressing F7 we can step in code and see the pipeline.

3 DATA HAZARDS

3.1 READ AFTER WRITE (RAW)

This type of hazard occurs when an instruction tries to read a register before a previous instructions writes an update value
to it. [2]

2

http://indigo.ie/~mscott/

3.1.1 WITHOUT FORWARDING

Hazard: RAW without forwarding Cost: 2 cycles

The following code was written:

Figure 3.1: Assembly code for adding two numbers A and B and then storing C.

Figure 3.2: Cycles view showing two cycles of stall when there is RAW hazard while pipeline view showing execution block
doing no work

3.1.2 WITH FORWARDING

Hazard: RAW with forwarding Cost: 1 cycles

In WinMIPS simulator Configure > Enable Forwarding was turned ON. This allows the values after execution stage to be
forwarded to the next execution so that it can immediately start next instruction execution. This way penalty is reduced from
2 cycles stall to 1 cycle stall.

Figure 3.3: Cycles view showing only 1 cycle of stall when there is RAW hazard while pipeline view showing execution
block ready to execute add instruction.

3.1.3 OPTIMAL REDUCED PENALTY SOLUTION

Hazard: RAW with scheduling and forwarding Cost: 0 cycles

The original code was modified to include one instruction between load and add as follows:

3

Figure 3.4: Assembly code for adding two numbers A and B and then storing C.

Figure 3.5: Cycles view showing no stall while pipeline view showing every block busy.

3.2 WRITE AFTER READ (WAR)

This type of hazard occurs when an instruction tries to write to a register before a previous instructions has read its value.

3.2.1 PROBLEM

Hazard: WAR Cost: 3 cycles

The following code was written:

Figure 3.6: Assembly code for adding three floating points A, B, and C.

4

Figure 3.7: Cycles view showing 3 cycles of stall when there is WAR hazard. If the mul.d is allowed to issue, it could
"overtake" the second add.d and write to f4 first. Therefore in this case the mul.d must be stalled in ID.

3.2.2 SOLUTION

WAR data hazard can be removed by register renaming.

Hazard: WAR with register renaming Cost: 0 cycles

The code was modified to following:

Figure 3.8: Assembly code for adding three floating points A, B, and C.

Figure 3.9: Cycles view showing 3 cycles of stall when there is WAR hazard. If the mul.d is allowed to issue, it could
"overtake" the second add.d and write to f4 first. Therefore in this case the mul.d must be stalled in ID.

3.3 WRITE AFTER WRITE (WAR)

This type of hazard occurs when an instruction tries to write to a register immediately after previous instructions has written
its value. This type of hazard can occur more often in out-of-order execution of instructions.

3.3.1 PROBLEM

Hazard: WAW Cost: 1 cycle

The following code was written:

5

Figure 3.10: Assembly code for adding three floating points A, B, and C.

Figure 3.11: Cycles view showing 1 cycle of stall when there is WAW hazard.

3.3.2 SOLUTION

Hazard: WAW with register renaming Cost: 0 cycle

The code was modified to following where the register f7 was renamed to f8:

Figure 3.12: Assembly code for adding three floating points A, B, and C.

6

Figure 3.13: Cycles view showing 1 cycle of stall when there is WAW hazard.

4 CONCLUSION

• WAW and WAR hazards can easily be reduced to 0 cycle latency cost by combination of scheduling and register
renaming.

• RAW hazard penalty can be reduced to fewer cycles by forwarding. But the penalty can completely be hidden by
rescheduling the code to hide latency.

• Intelligent Compiler design is very important in order to reduce penalties and re-schedule the code after mapping data
dependencies.

REFERENCES

[1] M. Scott. (2012, April) Winmips64. [Online]. Available: http://indigo.ie/~mscott/

[2] D. Tullsen. Pipeline hazards. Pdf. Jacobs School of Engineering. [Online]. Available: http://cseweb.ucsd.edu/classes/
wi05/cse240a/pipe2.pdf

7

http://indigo.ie/~mscott/
http://cseweb.ucsd.edu/classes/wi05/cse240a/pipe2.pdf
http://cseweb.ucsd.edu/classes/wi05/cse240a/pipe2.pdf

	Objectives of the lab
	Downloading & Setting up WinMIPS64
	Installation
	Analyses

	Data Hazards
	Read After Write (RAW)
	Without Forwarding
	With Forwarding
	Optimal Reduced Penalty Solution

	Write After Read (WAR)
	Problem
	Solution

	Write After Write (WAR)
	Problem
	Solution

	Conclusion

