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1 OBJECTIVES OF THE LAB

1. Extract ILP with loop unrolling.

2. Use scheduling and register renaming to reduce hazards.

3. Performance improvements of ILP and scheduling.

4. Use of different branch predictors to reduce control hazards.

2 CONVERTING C CODE TO ASSEMBLY LANGUAGE

2.1 COMPLETE C CODE

1 i n t main ( ) {
/ / F i l l i n g x [ ] up wi th random d a t a

3 i n t x [ 1 0 0 0 ] ;
i n t a = 9 ;

5 f o r ( i n t i = 0 ; i < 1000 ; i ++)
{

7 x [ i ] = rand ( ) % 100 + 1 ;
}

9 / / F i l l i n g y [ ] up wi th random d a t a
i n t y [ 1 0 0 0 ] ;

11 f o r ( i n t i = 0 ; i < 1000 ; i ++)
{

13 y [ i ] = rand ( ) % 100 + 1 ;
}

15 / / O r i g i n a l Code
f o r ( i n t i = 0 ; i <= 1000 ; i ++)

17 {
x [ i ] = a ∗ x [ i ] + y [ i ] ;

19 }
r e t u r n 0 ;

21 }

3 WITHOUT OPTIMIZATION

3.1 ASSEMBLY CODE

1 . d a t a
A: . word 9

3 B : . word 4000
C : . word 40

5 D: . word 6040

7 . t e x t
main :

9 l d r1 ,A( r0 )
l d r2 , B( r0 )

11 l d r3 , C( r2 )
l d r4 ,D( r2 )

13 dmul r5 , r1 , r3
dadd r6 , r5 , r4

15 sd r6 , C( r2 )
d a d d i r2 , r2 ,−4

17 bnez r2 , 8
h a l t
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3.2 PERFORMANCE

This code runs in 15 cycles with 6 stalls due to RAW and 1 stall due to branch control hazard.

Cycles Per Iteration (CPI) = 15 (3.1)

If the clock of the computer is 1 GHz:

Performance =
15× 1000

1× 109
= 15µs (3.2)

3.3 SIMULATION IN WINMIPS

After writing the code is was verified using the asm tool provided with WinMIPS. The following are the results from
WinMIPS.

Figure 3.1: First two instructions are just loading the variables so the cycles wasted on it are not counted. Only the iteration
cycle time is counted as shown in the figure.

Figure 3.2: The figure shows that there are 6 stalls due to RAW hazard and 1 stall which occurs due to RAW and Control
hazard at the same time.

4 WITH SCHEDULING ONLY

4.1 ASSEMBLY CODE
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. d a t a
2 A: . word 9

B : . word 4000
4 C : . word 40

D: . word 6040
6

. t e x t
8 main :

l d r1 ,A( r0 )
10 l d r2 , B( r0 )

l d r3 , C( r2 )
12 dmul r5 , r1 , r3

l d r4 ,D( r2 )
14 d a d d i r2 , r2 ,−4

dadd r6 , r5 , r4
16 sd r6 , C( r2 )

bnez r2 , 8
18 h a l t

4.2 PERFORMANCE

This code runs in 13 cycles with 5 stalls due to RAW and 1 stall due to branch control hazard.

Cycles Per Iteration (CPI) = 13 (4.1)

If the clock of the computer is 1 GHz:

Performance =
13× 1000

1× 109
= 13µs (4.2)

Improvement is given by:

Improvement =
Old CPI

New CPI
=

15

13
≈ 1.15 times (4.3)

4.3 SIMULATION IN WINMIPS

After writing the code is was verified using the asm tool provided with WinMIPS. The following are the results from
WinMIPS.

Figure 4.1: First two instructions are just loading the variables so the cycles wasted on it are not counted. Only the iteration
cycle time is counted as shown in the figure.
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Figure 4.2: The figure shows that there are 5 stalls due to RAW hazard and 1 stall which occurs due Control hazard at the
same time.

5 LOOP UNROLLING WITHOUT OPTIMIZATION

5.1 ASSEMBLY CODE

. d a t a
2 A: . word 9

B : . word 4000
4 C : . word 40

D: . word 8000
6

. t e x t
8 main :

l d r1 ,A( r0 ) # Loading a
10 l d r2 , B( r0 ) # Loading i 1

l d r3 ,D( r0 ) # Loading i 2
12 l d r4 , 0 ( r2 ) # Loading x [ i 1 ]

l d r5 ,−4( r2 ) # Loading x [ i 1 + 1]
14 l d r6 ,−8( r2 ) # Loading x [ i 1 + 2]

l d r7 ,−12( r2 ) # Loading x [ i 1 + 3]
16 l d r8 ,−16( r2 ) # Loading x [ i 1 + 4]

dmul r4 , r1 , r4 # M u l t i p l y i n g x [ i 1 ] wi th a
18 dmul r5 , r1 , r5 # M u l t i p l y i n g x [ i 1 + 1] wi th a

dmul r6 , r1 , r6 # M u l t i p l y i n g x [ i 1 + 2] wi th a
20 dmul r7 , r1 , r7 # M u l t i p l y i n g x [ i 1 + 3] wi th a

dmul r8 , r1 , r8 # M u l t i p l y i n g x [ i 1 + 4] wi th a
22 l d r9 , 0 ( r3 ) # Loading y [ i 2 ]

l d r10 ,−4( r3 ) # Loading y [ i 2 + 1]
24 l d r11 ,−8( r3 ) # Loading y [ i 2 + 2]

l d r12 ,−12( r3 ) # Loading y [ i 2 + 3]
26 l d r13 ,−16( r3 ) # Loading y [ i 2 + 4]

d a d d i r2 , r2 ,−20 # i 1 = i 1 − 20 (5∗4 = 20)
28 d a d d i r3 , r3 ,−20 # i 2 = i 2 − 20 (5∗4 = 20)

dadd r4 , r9 , r4 # Doing x [ i 1 ] = a∗x [ i 1 ] + y [ i 2 ]
30 dadd r5 , r10 , r5 # Doing x [ i 1 + 1] = a∗x [ i 1 + 1] + y [ i 2 + 1]

dadd r6 , r11 , r6 # Doing x [ i 1 + 2] = a∗x [ i 1 + 2] + y [ i 2 + 2]
32 dadd r7 , r12 , r7 # Doing x [ i 1 + 3] = a∗x [ i 1 + 3] + y [ i 2 + 3]

dadd r8 , r13 , r8 # Doing x [ i 1 + 4] = a∗x [ i 1 + 4] + y [ i 2 + 4]
34 sd r4 , 2 0 ( r2 ) # S t o r i n g x [ i 1 ]

sd r4 , 1 6 ( r2 ) # S t o r i n g x [ i 1 + 1]
36 sd r4 , 1 2 ( r2 ) # S t o r i n g x [ i 1 + 2]

sd r4 , 8 ( r2 ) # S t o r i n g x [ i 1 + 3]
38 sd r4 , 4 ( r2 ) # S t o r i n g x [ i 1 + 4]

bnez r2 , 12
40 h a l t
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5.2 PERFORMANCE

This code runs in 30 cycles with 5 stalls due to Structural hazards and 1 stall due to branch control hazard.

Cycles Per Iteration (CPI) =
30 Clocks Per Iteration

5 Loops Per Iteration
= 6 (5.1)

If the clock of the computer is 1 GHz:

Performance =
6× 1000

1× 109
= 6µs (5.2)

Improvement is given by:

Improvement =
Old CPI

New CPI
=

15

6
≈ 2.5 times (5.3)

5.3 SIMULATION IN WINMIPS

After writing the code is was verified using the asm tool provided with WinMIPS. The following are the results from
WinMIPS.

Figure 5.1: This is the cycles window after un-rolling the loop 5 times. However, there are several structural hazards because
the multiplier needs to write the values back to memory while the current instruction also needs the Write Back
Block.

6 LOOP UNROLLING WITH OPTIMIZATION

6.1 ASSEMBLY CODE

. d a t a
2 A: . word 9

B : . word 4000
4 C : . word 40

D: . word 8000
6

. t e x t
8 main :

l d r1 ,A( r0 ) # Loading a
10 l d r2 , B( r0 ) # Loading i 1

l d r3 ,D( r0 ) # Loading i 2
12 l d r4 , 0 ( r2 ) # Loading x [ i 1 ]

l d r5 ,−4( r2 ) # Loading x [ i 1 + 1]
14 l d r6 ,−8( r2 ) # Loading x [ i 1 + 2]

l d r7 ,−12( r2 ) # Loading x [ i 1 + 3]
16 l d r8 ,−16( r2 ) # Loading x [ i 1 + 4]
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dmul r4 , r1 , r4 # M u l t i p l y i n g x [ i 1 ] wi th a
18 l d r9 , 0 ( r3 ) # Loading y [ i 2 ]

d a d d i r2 , r2 ,−20 # i 1 = i 1 − 20 (5∗4 = 20)
20 dmul r5 , r1 , r5 # M u l t i p l y i n g x [ i 1 + 1] wi th a

l d r10 ,−4( r3 ) # Loading y [ i 2 + 1]
22 dmul r6 , r1 , r6 # M u l t i p l y i n g x [ i 1 + 2] wi th a

l d r11 ,−8( r3 ) # Loading y [ i 2 + 2]
24 dmul r7 , r1 , r7 # M u l t i p l y i n g x [ i 1 + 3] wi th a

l d r12 ,−12( r3 ) # Loading y [ i 2 + 3]
26 dmul r8 , r1 , r8 # M u l t i p l y i n g x [ i 1 + 4] wi th a

l d r13 ,−16( r3 ) # Loading y [ i 2 + 4]
28 d a d d i r3 , r3 ,−20 # i 2 = i 2 − 20 (5∗4 = 20)

dadd r4 , r9 , r4 # Doing x [ i 1 ] = a∗x [ i 1 ] + y [ i 2 ]
30 dadd r5 , r10 , r5 # Doing x [ i 1 + 1] = a∗x [ i 1 + 1] + y [ i 2 + 1]

dadd r6 , r11 , r6 # Doing x [ i 1 + 2] = a∗x [ i 1 + 2] + y [ i 2 + 2]
32 dadd r7 , r12 , r7 # Doing x [ i 1 + 3] = a∗x [ i 1 + 3] + y [ i 2 + 3]

dadd r8 , r13 , r8 # Doing x [ i 1 + 4] = a∗x [ i 1 + 4] + y [ i 2 + 4]
34 sd r4 , 2 0 ( r2 ) # S t o r i n g x [ i 1 ]

sd r4 , 1 6 ( r2 ) # S t o r i n g x [ i 1 + 1]
36 sd r4 , 1 2 ( r2 ) # S t o r i n g x [ i 1 + 2]

sd r4 , 8 ( r2 ) # S t o r i n g x [ i 1 + 3]
38 sd r4 , 4 ( r2 ) # S t o r i n g x [ i 1 + 4]

bnez r2 , 12
40 h a l t

6.2 PERFORMANCE

This code runs in 28 cycles with 3 stalls due to Structural hazards and 1 stall due to branch control hazard.

Cycles Per Iteration (CPI) =
28 Clocks Per Iteration

5 Loops Per Iteration
= 5.6 (6.1)

If the clock of the computer is 1 GHz:

Performance =
5.6× 1000

1× 109
= 5.6µs (6.2)

Improvement is given by:

Improvement =
Old CPI

New CPI
=

15

5.6
≈ 2.68 times (6.3)

6.3 SIMULATION IN WINMIPS

After writing the code is was verified using the asm tool provided with WinMIPS. The following are the results from
WinMIPS.

7



Figure 6.1: This is the cycles window after un-rolling the loop 5 times. Structural hazards previously present are removed up
to some point.

7 BENCHMARKING USING SIMPLESCALAR

Following is the result from SimpleScalar simulator:

sim : ∗∗ s t a r t i n g f u n c t i o n a l s i m u l a t i o n ∗∗
2

sim : ∗∗ s i m u l a t i o n s t a t i s t i c s ∗∗
4 s im_num_insn 4058 # t o t a l number o f i n s t r u c t i o n s e x e c u t e d

s im_num_refs 1337 # t o t a l number o f l o a d s and s t o r e s e x e c u t e d
6 s i m _ e l a p s e d _ t i m e 1 # t o t a l s i m u l a t i o n t ime i n s e c o n d s

s i m _ i n s t _ r a t e 4058 .0000 # s i m u l a t i o n speed ( i n i n s t s / s e c )
8 l d _ t e x t _ b a s e 0 x00400000 # program t e x t ( code ) segment base

l d _ t e x t _ s i z e 2318 # program t e x t ( code ) s i z e i n b y t e s
10 l d _ d a t a _ b a s e 0 x10000000 # program i n i t i a l i z e d d a t a segment base

l d _ d a t a _ s i z e 4096 # program i n i t ’ ed ‘ . da t a ’ and u n i n i t ’ ed ‘ . bss ’ s i z e i n b y t e s
12 l d _ s t a c k _ b a s e 0 x 7 f f f c 0 0 0 # program s t a c k segment base ( h i g h e s t a d d r e s s i n s t a c k )

l d _ s t a c k _ s i z e 16384 # program i n i t i a l s t a c k s i z e
14 l d _ p r o g _ e n t r y 0 x00400140 # program e n t r y p o i n t ( i n i t i a l PC)

l d _ e n v i r o n _ b a s e 0 x 7 f f f 8 0 0 0 # program e n v i r o n m e n t base a d d r e s s a d d r e s s
16 l d _ t a r g e t _ b i g _ e n d i a n 0 # t a r g e t e x e c u t a b l e end ian−ness , non−z e r o i f b i g e n d i a n

mem. p a g e _ c o u n t 14 # t o t a l number o f pages a l l o c a t e d
18 mem. page_mem 56k # t o t a l s i z e o f memory pages a l l o c a t e d

mem. p t a b _ m i s s e s 14 # t o t a l f i r s t l e v e l page t a b l e m i s s e s
20 mem. p t a b _ a c c e s s e s 334404 # t o t a l page t a b l e a c c e s s e s

mem. p t a b _ m i s s _ r a t e 0 .0000 # f i r s t l e v e l page t a b l e miss r a t e

7.1 AT 1GHZ, HOW MUCH TIME TO PROCESS ?

Speed =
4058

1× 109
≈ 4µs (7.1)
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Figure 7.1: Comparison between different optimization types and time taken to execute code. LU means Loop Un-rolling.

8 CONCLUSION

Standard Performance Evaluation Corporation (SPEC) is a non-profit corporation formed to establish, maintain and en-
dorse a standardized set of relevant benchmarks that can be applied to the newest generation of high-performance computers.
SPEC benchmark suites are used to evaluate several performance properties of a processor, compiler, and memory. SPEC
benchmark can also be used to find out which addressing modes are most frequently used by the processor and are worth im-
plementing in hardware. Only Most Frequently Used (MFU) addressing modes are implemented in order to save processor
implementation cost (implementing less hardware will save die area and reduce complexity of design).
Immediate, register, direct, memory indirect, and displacement are usually selected as worth implementing in a processor.
Size of immediate and size of displacement is kept at 16 bits.

BRANCHING HAZARDS CAN BE DEALT WITH USING:

1. Predict branch is not taken Using extra adder in decode, and evaluate condition in decode stage that reduces the cost
of control hazard to only 1 cycle instead of 3 cycles.We noticed that the instruction next to branch is already being
fetched. If we predict or assume that the branch is not taken. If the prediction is correct, we can continue executing
the instruction and there will be no cost to branch.
For example, if 60% of branches are taken and 40% are not taken. Then the cost will be:

Cost = 1 + 0.2× 0.6 times1 = 1.12

If we mis-predict, convert the instruction to NOOP (No-Operation).

2. Predict Branch is taken For this kind of prediction, MIPS ISA does not benefit because we anyways have to calculate
the address.

3. Delayed Branches Assumes every instruction after branch is always executed no matter if branch is taken or not.
Processor has a delayed slot that the compiler will fill with a useful instruction.
Miss Prediction: Branch Cancellation If miss predict, will use canceling branches. Instruction in delay slot (wrong
instruction) is canceled. The advantage of this is that this allows the compiler to become more aggressive.
Assume: Branch frequency = 20%. We have 50% taken and compiler could only fill 80% of delayed slot and 90% of
time correct prediction.

a) Prediction: That the branch is not taken.

Performance = 1 + 0.2× 1× 0.5 = 1.10

10% Reduction in performance.
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b) Prediction: That the branch is taken.

Performance = 1 + 0.2× 1× 1 = 1.2

20% Reduction in performance.

c) Delayed branches. Delay slot mis-prediction.

Performance = 1 + 0.2
(
0.2× 1 + 0.8× 0.1× 1

)
Performance = 1 + 0.2

(
0.2 + 0.08

)
= 1 + 0.2

(
0.28

)
= 1.056

Only 5.6% Reduction in performance.

8.1 EXCEPTION HANDLING IN PIPELINE

Why we need exceptions?

• I/O devices using interrupts to communicate with CPU

• Operating System

• Memory Faults

• Hardware failure/malfunction.

Behavior of exception types:-

1. Synchronous/Asynchronous from software occur at specific location of code. Asynchronous caused by device.

2. Maskable/Non-maskable

3. Resume Execution/Terminate

4. Occur between instructions or within the instruction

It is difficult to support precise exceptions (resume) and if exception is within the instruction. Need to be restartable even
within the instruction.
Exceptions in 1st stage (Instruction Fetch)

1. Exception page fault

Exceptions in 2nd stage (Instruction Decode)

1. Wrong Code

Exceptions in 3rd stage (Execute)

1. Arithmetic overflow

Exceptions in 4th stage (Memory)

1. Page Fault

How processor serves an exception?

1. Collect processor state

2. Go to the offending exception and service it

3. Restore the processor state
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4. Return back to execute the next instruction. Resume as if nothing occurred.

Why pipelining complicates exception handling?

1. Two instructions generate exceptions at the same time.

2. An earlier instruction causes and exception later after the following instruction.

3. Exceptions must be handled as if it is not pipelined (in order).

How to handle exceptions in pipeline?

1. All instructions before the offending instructions must complete.

2. Must wait for all following instruction until the offending instruction is handled.

3. Turn off all write units of the following instructions.

4. Status vector register collects the interrupts an is examined by processor. Posts any interrupt request.
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