
Abu Dhabi University

Microprocessors and Firmware Programming

Lab Report 3

Introduction to AVR Studio and HAPSIM

Author:
Muhammad Obaidullah
1030313

Supervisor:
Dr. Mohammed Assad Ghazal

Section 1

June 16, 2012



Abstract

In this lab we were introduced to AVR Studio, HAPSIM, and Basic ATMega16 connection
through an example of a simple blinking LED problem.

1 Introduction

In First Exercise, we were introduced to the AVR Studio IDE, and HAPSIM. We were taken
through steps of how to install and run AVR Studio and HAPSIM. Additionally, we coded a simple
blinking LED program and simulated it in HAPSIM.

In Second Exercise, we were introduced to the basic connections of ATMega16. E.g. VCC, GND,
XTAL etc. Then we connected the JTAG pins of the ATMega16 to the JTAG MKII programmer.
Finally, we downloaded our code on the ATMega16 using the JTAG MKII programmer.

2 Experiment Set-up

The ATMega16 chip was already mounted on a safety bracket. We had to place the bracket with
the micro-controller on to the breadboard. Then we connected the micro-processor to the JTAG
MKII programmer and the LEDs as shown in the Figure 1 and Figure 2.

Figure 1: This is how we connect LEDs to the
ATMega16

Figure 2: Figure showing connections from AT-
Mega16 to the JTAG pins

3 List of Equipment used

• ATMega16 micro-controller chip.

• JTAG MKII programmer.

• Wires.

• Breadboard.

• Mounting bracket for micro-controller.

1



• 8 LEDs.

• 8 330 Ω resistors.

• 5V power supply.

• AVR Studio IDE.

• HAPSIM.

4 Procedure

4.1 Exersice 1

• Open setup files and install AVR studio and HAPSIM by following the screen instructions.

• Start AVR Studio and click on File/New/New Project.

• Write the following code into the AVR .c file.

#include <avr/io.h>

#include <util/delay.h>

#define LED_Off 0

#define LED_On 1

int main()

{

int current = 0;

PORTA = 0xFF;

while(1)

{

switch (current)

{

case LED_Off:

{

PORTA = 0x00;

current = LED_On;

_delay_ms(500);

}

case LED_On:

{

PORTA = 0xFF;

current = LED_Off;

_delay_ms(500);

}

}

}

}

• Open HAPSIM.

• Choose your Micro-controller, in this case its ATMega16.

• open 10 LEDs.

2



• Goto Options/LED settings and change the options as shown in fiqure 3.

• Simulate your code by opening the .c file you saved from AVR studio.

Figure 3: Creating a new project in AVR Studio

Figure 4: Choosing the right debug-
ger/programmer is essential

Figure 5: Writing the code in AVR Studio Figure 6: Creating LEDs in HAPSIM

4.2 Exercise 2

• Mount the Micro-controller with the bracket onto the breadboard.

• Connect the micro-controller pins to the appropriate JTAG pins as shown in Fiqure 1.

• Start AVR Studio and find the program you were previously working on.

• Compile and build the code.

• If the program doesn’t work, Troubleshoot the problems and try again.

3



Figure 7: Change all the ports to PORT A because you are using PORT A as your output port for
the LEDS and then change the bit number sequentially for all the bits of Port A

5 Results and Discussions

At the end of these exercises we got the following results:-

• The AVR and HAPSIM are easy to install and the version of AVR Studio to be installed is
4.19.

• The program we uploaded to the micro-controller is stored in the flash memory and gets
re-written when we upload another one from build and compile button in AVR Studio.

• The code we ran on the micro-controller allowed the LEDs connected to the Port A to be On
for 0.5 seconds and Off for another 0.5 seconds.

• For using a software delay you have to include a header file “util/delay.h”.

• “delay..ms()” is the command for software delay where the CPU is kept busy doing a useless
loop for the given milli-seconds

6 Conclusion

• All the LEDs have to be connected to the Port A because, we have set the Port A as output
and not the other ports.

• The LEDs have to be connected in series with a 330 Ω resistor in order to prevent LED from
being burned down of high current coming from the micro-processor pin.

• Micro-controller is very sensitive to minute changes in voltages and voltage spikes. Thus, we
needed to have a mounting bracket for it.

4



• AVR Dragon cannot program as many micro-controllers as JTAG MKII.

• AVR Dragon and JTAG MKII are the programmers/debuggers which provide a bridge be-
tween computer’s USB interface to the micro-controller pins.

• By using the software delay we are keeping the micro-controller busy for the prescribed time
but we can use interrupts and hardware timers which come with the micro-controller to do
the same task and that will keep the micro-controller free to do other tasks.

5


