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1 EXERSICE 5.2.4

1.1 MATLAB CODE

N
s = 0.1; % Step size
d = 0.01; % Stopping condition distance
x(1) = 1; % Initial point x coordinate
y(l) = 1; % Initial point y coordinate
k =1;
for i = 1:N
xinc = —s*x(4*x(x(i)—1)"3—-1); % Partial derivative of f with respect to x
yinc = —s*2%(y(i)—2); % Partial derivative of f with respect to x
if (xinc”*2+yinc”2<d”2)
break % Stopping condition reached, come out of loop
else
x(i+1) = x(i) + xinc; % Step towards steep
y(i+l) = y(i) + yinc; % Step towards steep
k =k + 1; % Iteration count increment
end
end
figure
scatter (x,y,3,’b’, filled *);
hold on
i = 1:k;
plot(i, (x—1).M—x+(y—2)."2);
fprintf (’Iterations: %i, Final distance: %.4f\n’, k, xinc”2+yinc”"2);
fprintf (’x_min: %.2f, y_min: %.2f\n’, x(length(x)), y(length(y)));

e e =

00;

s| fprintf ("Minimum Value: %.2f\n’, (x(length(x))—1)."4—x(length(x))+(y(length(y))—-2).72);

1.2 FIGURES
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Figure 1.1: Progress is shown in red line while the x and y progress is shown by blue dots.




1.3 OuTrUT
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Iterations: 15, Final distance: 0.0001
¥ min: 1.63, v min: 1.96

Minimum Value: -1.47

Figure 1.2: Program output showing final x value as 1.63 and y value as 1.96.

2 EXERSICE 5.2.5

2.1 SOLUTION TO PART A
fla,y) = 2*(x = 2)(z +3) +y*(y — 2)(y +3)
= (2° = 22%)(z +3) + (v — 2°)(y + 3)
=2%(e +3) = 22%(x +3) + 4 (y + 3) — 2y°(y + 3)
:334+3333—2x3—6x2+y4+3y3—2y3—6y2

:x4+x3—6x2+y4+y3—6y2
OF _ 448 4342 — 122
oz
g =42 4+ 3y — 12y
dy
N = 100;
s = 0.01; % Step size
d = 0.01; % Stopping condition distance
x(1) = 1; % Initial point x coordinate
y(1) = 1; % Initial point y coordinate
k =1;
for i = 1:N
xinc = —s*(4%xx(1)"3+3%xx(i)"2—12%x(i)); % Partial derivative of f with respect to x
yinc = —s*(4xy(i)"3+3xy(i)*2—12xy(i)); % Partial derivative of f with respect to y

if (xinc”2+yincA2<d”2)
break % Stopping condition reached, come out of loop
else
x(i+1) x(i) + xinc; % Step towards steep
y(i+l) = y(i) + yinc; % Step towards steep
k =k + 1; % Iteration count increment
end
end
figure
Joscatter (x,y,3,°b’,’ filled ") ;
%hold on
i = 1:k;
plot(i, x.2A2.%(x—2).%x(x+3)+y."2.%x(y—2).%x(y+3));
fprintf (’Iterations: %i, Final distance: %.4f\n’, k, xinc”2+yinc”"2);
fprintf (’x_min: %.2f, y_min: %.2f\n’, x(length(x)), y(length(y)));:
fprintf (’Minimum Value: %.2f\n’, (x(length(x)))."2x(x(length(x))—2)*(x(length(x))+3)+y(length(y))
A2x(y(length(y))—2)*(y(length(y))+3));
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Figure 2.1: Function f plotted against number of iterations with initial point (1,1) and smooth step size of 0.01.

2.2 SOLUTION TO PART B
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Figure 2.2: Function f plotted against number of iterations with initial point (1,-1).

2.3 SOLUTION TO PART C
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Figure 2.3: Function f plotted against number of iterations with initial point (-1,-1).
2.4 SOLUTION TO PART D
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Figure 2.4: Function f plotted against number of iterations with initial point (0,0).
2.5 SOLUTION TO PART E
x = —3.2:0.1:2.2;
y = —3.2:0.1:2.2;
[X, Y] = meshgrid(x,y);

Z = X A2 % (X=2) % (X+3)+Y. A2 % (Y=2). % (Y+3):

surf(X,Y,Z);
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Figure 2.5: 3D surf plot showing function f.

3 EXERSICE 6.4.1

Figure 3.1: A 3/2-1 Neural Network.

y1 = b1 + w11 + wi2x2 + wi3x3
Y2 = ba + wa121 + warxs + wozx3
yy = bb + wwyy1 + wwayo
0 if yy<O
fo = .
1 dif yy=>0
fe = (t - fO)2



3.1 UPDATE FOR wjq

Ofe
Own

w12 ‘= W12 — &

To calculate the partial derivative:-
Ofe _ Ofe afo% oy
Owiz  Of, Oyy Oy1 Qw1
= —2(t = fo) (1) (ww1)(22)

= —2ewwiTs

W19 = W12 + XEWW1T9

3.2 UPDATE FOR ws3
Ofe

Owas

wo3 i— W3 — &

To calculate the partial derivative:-
Ofe _ Ofe 0fo Oyy Oya
Owaz  Ofo Oyy Oys Owas
= =2(t = fo) (1) (ww2)(x3)

= —2ewwsxs3

W93 1= W23 + eWW2T3

4 EXERSICE 6.4.2

Figure 4.1: A 2/3-2-1 Neural Network.

Y1 = b1 + w1z + wi2T2

Y2 = by + w2171 + worrs

Y3 = b3 + w3171 + w32T2
yy1 = bb1 + wwiryr + wwisy2 + wWw13ys
yy2 = bby + wwa1y1 + wwaays + Ww23ys

yyy = bbb + wwwiyy1 + wwwayys



4.1 UPDATE FOR wwws
Ofe

Owwws

WWW9 := WWW2 — Q

To calculate the partial derivative:-
Ofe _ 9fe 0fo Oyyy
Jwwwy  0f, Oyyy Owwws

= —2(t — fo)(1)(yy2)
= —2eyyo

WWW2 1= WWws + aeyys

4.2 UPDATE FOR wwsq
Ofe

8’[01021

WWa ‘= WWa] —

To calculate the partial derivative:-
6fe _ 8fe afo 8yyy 8yy2
dwwar  0f, Oyyy Oyys dwwa

= —2(t = fo) (1) (wwwa2) (y1)

= —2ewwway

WWW2 1= WWws + ey

4.3 UPDATE FOR wq»
Ofe

6w12

w12 ‘= W12 — &

To calculate the partial derivative:-

Ofe _ 0fe 9fo (&yyy yyr Oy1 dyyy Oyy2 Oy >
Owis  Of, Oyyy \Oyy1 Oy1 Owia  Oyys Oy Owis
= —=2(t — fo)(1)(wwwiwwii e + wwwrwwex2)

= —2e(wwwiwwi Ty + WWWawwo T2)

wwwsy = wwwsy + ae(WwwwwTe + WWWwawwe Tra)

5 EXERSICE 6.5.1

y1 = by + w1z + wi2xs + wises
Y2 = by + wa1x1 + worxs + wazxa

Y3 = by + w3121 + ws2xy + w33xs

zz1 = f(y1)
xxo = f(y2)
rxs = f(y3)

yy1 = bby + wwi1zT1 + WWwi2TT2 + WWI3TT3
yy2 = bby + wwo1 X1 + WW0IT Ty + WW23TI3
zzrzy = f(yy1)
zxzy = f(yy2)

YYy = www1TTrr] + wwwoxrrry + bbb



Figure 5.1: A 3/3-2-1 Neural Network.

5.1 UPDATE FOR wwsa;
Ofe

8ww21

WW21 = WwWo1 — &

To calculate the partial derivative:-
Ofe _ Ofe 0fo dyyy dxxry Jyys
Owwgr  Of, Oyyy Ozzxy Jyy2 Owwa

Oxxrxroy __

drxxs:
yy2 2

Denoting
= =2(t — fo)(1)(wwwdzzzows)

= —2e(wwwidrrrorrs)

wwws = wwwy + ae(wwwdrrraTrTs)

5.2 UPDATE FOR w3

Ofe
Owis

w13 ‘= w13 — &

To calculate the partial derivative:-

Ofe  Ofc 0f, ( Oyyy Owxxy Oyyr Oxxy Oy1 | Oyyy Oxwxa Oyyz Ovxy Oy )
Owis  Of, Oyyy \Oxzx1 Oyyr Oxxy Oyi Owiz  Oxxxs Oyys Orxy Oyi Owis

Oxxxy — d:c:cxl, Oxxxo — dxxe’ oz _ d:IZ(lZl, Oxxo —

Denotlng Yy1 Yy2 Y1 Yy1

dxxs:
= =2(t — fo)(1)(wwwdzzriwwderxs + wwwedrrrowws drrixs)

= —2e(wwwidrrriwwidrrxs + wwwedrrrowws drrTs)

wwwsy := wwwy + ae(www drrryww drrrs + wwwedrrrowws drrixs)

6 EXERSICE 6.6.1
7 EXERSICE 6.6.2
8 EXERSICE 6.6.3

9 EXERSICE 6.6.4



10 QUESTION 10

In this problem you will prove the 2 by 2 version of an important theorem that we will be using in Chapter 8 to derive the
matrix version of the back propagation algorithm. The idea is to write the derivatives of the output of a neuron with respect
to the weights of a previous layer as a matrix. This matrix of the derivatives is to have the exact same dimensions as the
weights written as a matrix.

Lets call the output by yy and the weight matrix W = [w;;]. The derivative matrix of yy with respect to the entries of
W is denoted by Dyy,, . In this matrix Dy, , the derivative % will be written at the same position as the entry w;; in the
£ ]

wwi wwu]

, T = [961] and yy = AWz
wwz1 wWwW22 T2

matrix W, that is, at row ¢, column j. Suppose A = [al ag], W = [

You will now prove Dy, = [zA]T by following the steps below:

(a) Write out AWX to express yy as a function of a;’s, w;j’s and z;’s

(b) Find all four derivatives 86 Yy

(c) Arrange the derivatives in the appropriate order to obtain Dyy, . For example, aw should be written at the position

row one column one, ;Tylyz should be written at position row one column two and so on.

(d) Express [zA]” as a function of a;’s, and z;’s and conclude that Dyw,, = [zA]T
10.1 SOLUTION TO PART A
yy = [a a ] wwi1p wWwi2| (X1
1 2 wwo21 wWwW2 xZ9
]
= [alwwn + aqwwar  ajwwiz + agwwm] [x }
2

= <a1ww11 + a2ww21)9€1 + <a1ww12 + a2ww22>9€2

= G1WW11T] + A2WW21T1 + ALWW12T2 + A2WW22T2

10.2 SOLUTION TO PART B

dyy _ a1t
6w11
dyy _ 0129
Owia
dyy _ a1
Owa
dyy _ -
ngg

10.3 SOLUTION TO PART C

Jyy Jyy

851}11 8811)12 —_ |:a1$1 a1$2:|
Yy Yy

Dwar  Dwos a2x1 Qa2x2

. [DW }_ arry aixrz
' v asTi1 a2%2



10.4 SOLUTION TO PART D

A" = [ [ﬂ (a1 ] ]T

T
_|a1Ty agxy
[a1x2 a2$2]

_ |a1x1r a172
a2T1 A2x2

DWyy = [xA]T
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