
Class Notes: Applied Optimization Techniques
Muhammad Obaidullah

M.A.Sc. Candidate, Ryerson University, mobaidullah@ryerson.ca

I. LECTURE 2: 7th OCTOBER 2015

A. Newton-Raphson Technique

1) Single Variable:

xnew = xold −
g(xold)

g′(xold)
(1)

Example: Single Variable

Let’s take the following equation

f(x) = x4 + 3x3 + 5x2 − 2x+ 8 (2)

+∞ and −∞ are always the roots of the polynomials. Let’s
not consider that. Let’s be realistic.

g(x) = 4x3 + 9x2 + 10x− 2 = 0 (3)

xnew = xold −
g(xold)

g′(xold)
(4)

= xold −
4x3old + 9x2old + 10xold − 2

12x2old + 18xold + 10
(5)

If xold = 0

xnew = 0− −2

+10
=

2

10
(6)

If xold = 2
10

xnew =
2

10
− 4(0.2)3 + 9(0.2)2 + 10(0.2)− 2

12(0.2)2 + 18(0.2) + 10
(7)

=
2

10
− 0.392

14.08
(8)

= 0.17 (9)

So these are the two iteration of this technique. In exam only
two iterations will be asked.

2) Multiple Variable:[
∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

] [
∆x
∆y

]
=

[
g1(x, y)
g2(x, y)

]
Example: Multiple Variable

f(x, y) = x3 + 3xy2 + 4x2y + 5y3 − 6x− 8y (10)

∂f

∂x
= g1(x, y) = 0 = 3x2 + 3y2 + 8xy − 6 (11)

∂f

∂y
= g2(x, y) = 0 = 6xy + 4x2 + 15y2 − 8 (12)

[
∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

] [
∆x
∆y

]
=

[
g1(x, y)
g2(x, y)

]

[
6x+ 8y 6y + 8y
6y + 8x 6x+ 30y

] [
∆x
∆y

]
= −

[
3x2 + 3y2 + 8xy − 6
6xy + 4x2 + 15y2 − 8

]
1st Iteration Let xold = 1 and yold = 1, then:[

6 + 8 6 + 8
6 + 8 6 + 30

] [
∆x
∆y

]
= −

[
3 + 3 + 8− 6
6 + 4 + 15− 8

]
Therefore,

∆x = −0.9 (13)

∆x =
9

22
= −0.375 (14)

xnew = xold + ∆x = 1 + (−0.9) = 0.1 (15)

ynew = yold + ∆y = 1 + (0.375) = 1.375 (16)

Checking convergence by Euclidean distance

dEuclidean =
√

(1− 0.1)2 + (1− 0.1375)2 6 0.02 (17)

Example: Multiple Variable

z = y = x = 2x2 − 2xy − y2 (18)

∂z

∂x
= −1− 4x− 2y = 0 = g1 (19)

∂z

∂y
= 1− 2x− 2yy = 0 = g2 (20)[

−4 −2
−2 −2

] [
∆x
∆y

]
= −

[
−1− 4x− 2y
1− 2x− 2y

]
Let’s begin with xold = 0 and yold = 0[

−4 −2
−2 −2

] [
∆x
∆y

]
= −

[
−1
1

]
∆x = −1 and ∆y = 3

2

mobaidullah@ryerson.ca

[
−4 −2
−2 −2

] [
−1
3
2

]
=

[
4− 3
2− 3

]

xnew = 0 + (−1) (21)

ynew = 0 + (
3

2
) (22)

B. Linear Systems

1) LU Decomposition: Lower triangular matrix is easily
to handle because all variable an be calculated by forward
operation [

a1 0 0
a2 b2 0
a3 b3 c3

][
x
y
z

]
=

[
d1
d2
d3

]
Upper triangular matrix is easily to handle because all variable
an be calculated by backward operation[

a1 b1 c1
0 b2 c2
0 0 c3

][
x
y
z

]
=

[
d1
d2
d3

]
If you have

A X = K (23)

it can easily be broken down into LU components. (Lower and
Upper matrix components)

For example if you have following system of equations:-a1x+ b1y + c1z + d1θ = K1

a2x+ b2y + c2z + d2θ = K2

a3x+ b3y + c3z + d3θ = K3

a4x+ b4y + c4z + d4θ = K4


it can easily be broken down into LU components. (Lower and
Upper matrix components) as followsl11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

 .
u11 u12 u13 u14

0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

 .
xyz
θ

 =

K1

K2

K3

K4


The upper triangular matrix can be consumed by the unknown
single column matrix and results in:-l11 0 0 0

l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

 .
αβγ
ζ

 =

K1

K2

K3

K4


So this allows the linear system of equation to be broken

into lower and upper matrices calculated once only and then
can be used by the program to calculate faster and accurate
results later.

Example

You want to decompose the following matrix:a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44




a

′

11 a
′

12 = a12

a
′
11

a
′

13 = a13

a
′
11

a
′

14 = a14

a
′
11

a
′

21 a
′

22 = a22 − a
′

12a
′

21 a
′

23 =
a23−a

′
13a

′
21

a
′
22

a
′

24 =
a24−a

′
14a

′
21

a
′
22

a
′

31 a
′

32 = a32 − a
′

12a
′

31 a
′

33 = a33 − (a
′

13a
′

31 + a
′

23a
′

32) a
′

34 =
a34−(a

′
14a

′
31+a

′
24a

′
32)

a
′
33

a
′

41 a
′

42 = a42 − a
′

12a
′

41 a
′

43 = a43 − (a
′

13a
′

41 + a
′

23a
′

41) a
′

44 = a44 − (a
′

14a
′

41 + a
′

24a
′

42 + a
′

34a
′

43)


This matrix contains both, the upper triangular matrix and the lower triangular matrix

C. Matrix Property

A matrix is positive (definite) if

Y
′
A Y => 0 for all Y ∈ RN (24)

A matrix is negative (definite) if

Y
′
A Y =< 0 for all Y ∈ RN (25)

A =

[
a1 b1
a2 b2

]
A =

[
2 3
4 5

]

[x y]

[
3 2
2 4

] [
x
y

]
> 0

[x y]

[
3x+ 2y
2x+ 4y

]
= 3x2 + 2xy + 2xy + y2 > 0

2x2 + (x+ 2y)2 ≥ 0 (26)

So this is definite positive matrix

Now if

A =

[
5 7
−2 −9

]
then

[x y]

[
5 7
−2 −9

] [
x
y

]
= [x y][

5x+ 7y
−2x− 9y

]
= 5x2 + 7xy − 2xy − 9y2 = 5x25xy − 9y2

This is a saddle point

II. LECTURE 3: 21st OCTOBER 2015

A. Agenda

1) Linear Systems (Continued)
2) Optimization by Approximation (Curve fitting)
3) Gradient techniques

• Steepest
a) Ascent

i) Fixed
ii) Optimum

b) Descent
i) Fixed

ii) Optimum

B. Linear Systems

[
a1x+ b1y + c1z = d1
a1x+ b2y + c2z = d2
a3x+ b3y + c3z = d3

]

[
a1 b1 c1
a2 b2 c2
a3 b3 c3

][
x
y
z

]
=

[
d1
d2
d3

]
=> LUX = D

Cramar’s Rule
AX = B (27)

x =
|Ax|
|A|

(28)

y =
|Ay|
|A|

(29)

z =
|Az|
|A|

(30)

where

Ax =

[
d1 b1 c1
d2 b2 c2
d3 b3 c3

]
Ay =

[
a1 d1 c1
a2 d2 c2
a3 d3 c3

]
Az =

[
a1 b1 d1
a2 b2 d2
a3 b3 d3

]
[
a1 b1
c1 d1

] [
x
y

]
=

[
d1
d2

]
[
x
y

]
=

1

∆

[
d1 −b1
−c1 a1

] [
d1
d2

]
Gauss-Sidel

x =
d1 − b1y − c1z

a1
(31)

y =
d2 − a2x− c2z

b2
(32)

z =
d3 − a3x− b2y

c3
(33)

LU with pivoting
Gauss-Jarobi

C. Optimization by approximation (Curve fitting)

We are going to use quadratic curve fitting. In other words,
we are going to fit any curve into a quadratic approximation
curve.

y = ax2 + bx+ c (34)

y
′

= 2ax+ b = 0 (35)

∴ xopt. =
−b
2a

(36)

yopt. = a(xopt.)
2 + b(xopt.) + c (37)

Now any three points (x1, y1), (x2, y2), (x3, y3) can be
taken from your graph and then the following system of
equations should be solved to find a, b, andc:

y1 = ax21 + bx1 + c

y2 = ax22 + bx2 + c

y3 = ax23 + bx3 + c



D. Steepest Ascent - Fixed

This is used when we are looking for a maximum of
a function and is used with a constant/fixed multiple α. α
determines how big or small the step is taken towards the
optimum point. So choosing a right value for α is crucial so
that the optimization algorithm does not overshoot or explode.

xnew = xold + α
∂f

∂x
(38)

ynew = yold + α
∂f

∂y
(39)

E. Steepest Descent - Fixed

This is used when we are looking for a minimum of
a function and is used with a constant/fixed multiple α. α
determines how big or small the step is taken towards the
optimum point. So choosing a right value for α is crucial so
that the optimization algorithm does not overshoot or explode.

xnew = xold − α
∂f

∂x
(40)

ynew = yold − α
∂f

∂y
(41)

	Lecture 2: 7th October 2015
	Newton-Raphson Technique
	Single Variable
	Multiple Variable

	Linear Systems
	LU Decomposition

	Matrix Property

	Lecture 3: 21st October 2015
	Agenda
	Linear Systems
	Optimization by approximation (Curve fitting)
	Steepest Ascent - Fixed
	Steepest Descent - Fixed

