Class Notes: Reconfigurable Computing Systems

Muhammad Obaidullah
M.A.Sc. Candidate, Ryerson University, mobaidullah@ryerson.ca

I. LECTURE 1: 10" SEPTEMBER 2015

Definitions & Classification

A. Computation Process & Architecture

1) Task: It is an information object that consists of
algorithm and data structure.

2) Algorithm: It is formal representation of functions
(operations) to be executed in determined sequence
according to information dependencies.

3) Data Structure: It formal representation of data
elements and their inter-dependencies.

Algorithm is implemented in a form of control flow.
Data Structure is implemented in a form of data flow.

Processor

Implements one of

Instruction Set

!

|

RISC

MISC

VLIW

Reduced Instruction Set
Computers

Minimal Instruction Set
Computers

Very Long Instruction
Word

’
,

.
I's

Commercially

CIsC

OISC

Available

* < | Complex Instruction Set

One Instruction Set

Computers

Computers

Figure 1: Types of instruction sets implemented by processors.
RISC is generally preferred because of pipelining and fixed

instruction execution time.

Data In

Control In

Data Path

Control Path

Data Out

Figure 2: Control manipulates/defines the data path. A pro-
cessor requires a control input but does not provide a control

output.

4) Computing Architecture: Acs can be considered as
a set of component(C) links(L) between components

and functional procedures (P)

Acs ={C, L, P}

ey

II. LECTURE 2: 17" SEPTEMBER 2015

Limited Features

Complex Operations
_A+B)xC D
T 10xK
To
pe’fﬂrln

Programmer

Figure 3: If the hardware is limited in the amount of operation
it can perform, programmer can break down the task to
implement is small manageable operations that the machine can
do. For example if the machine can only do addition operation,
the programmer can make it do multiplication by 5. This can
be done by commanding the machine to add the number five
times to itself.

A. Correspondence between the task and computing architec-
ture

Task can have different algorithms and data structure.
Therefore, operational components, links, and procedure of
processor may be different and need to conform the specifics
of the tasks and specification constraints.

Thus,
Task 1 —{C, L, P})

Task 2 — {C, L, P>} 3)

B. Concept of computing systems with programmable proce-
dure

Idea: Maybe it is possible to find a universal set of
elementary:

1) Data acquisition
2) Data processing
3) Data storage operations

to execute any algorithm and data structure on universal
computing platform.
In this case:

ACS - {C,L,P}

Fixed ‘/J

Variable
(Programmable)

Mapping the task: It is the process o loading certain con-
trol information (eg. sequence of instructions) to the memory
control unit according to the structure of the task and mapping

mobaidullah@ryerson.ca

of data to the data memory. The processors with universal
data-execution path (data-path) general for any algorithm and
universal memory general for any data structure where task-
t-architecture adaptation is done by programmer were called
computers with programmable procedure.

Advantages:-

1) Cheapest hardware implementation in comparison
with other concepts.

2) Relatively easy adaptation of a task to computing
platform.

3) Easy interfacing to uniformed peripherals.

Disadvantages:-

1) Limited performance due to sequential nature of ex-
ecution of control information.

C. Concept of processors with control information integrated
in data-path: Application Specific Integrated Circuits (ASIC)

Idea: Maybe it is possible to find the mechanism for archi-
tecture to task adaptation where integrated control information
to the data path would conform task algorithm, data structure
and performance constraints simultaneously. Therefore, for
each task T; — {C;, L;, P;} associated architecture should
be found.

This means that {C, L, P} are variable. This is a concept
of Reconfigurable Computing Systems (RCS).

ASIC | rrca |

N4

Performance

N
[w)
N

Programmability

RCS is a class of computing systems, where functions
of components, topology of links, between components and
procedures of data-execution, data-storage, data-input/output
transfer can be programmed.

~ ~

Agpcs = {C» :13}

Variable
(Programmable)

D. Classification of Computing Systems

Computers

T

Reconfigurable Computing
Systems

Computers with

R Application Specific Processors

Acs ={C,L,P} | | Apes={C.LP} | | Asp ={C,L,P}

E. General Organization of Programmable Logic Device
Hardware platform of RCS

[InputIOutput Blocks]

L

1]
Programmable H
nterconnect

il

III. LECTURE 3: 24'" SEPTEMBER 2015

FCR: Field of Configurable Resources is collection of
arrays of :

1) logic resources

2) memory resources

3) interconnect resources

4) interface resources

5) special function resources etc.

FCR must be considered in 3 levels

1) System-on-Chip level (SoC) inside the programmable
logic device (PLD)

2) System-on-Board

3) System level (which is multi-board)

_— RCS
/ Homogenous \

Fine Grained

/- Heterogenous \

Fine Grained

‘Types of Data
Processing
Components

Granularity of

Course Grained Components

Course Grained

—

. Way of
DRCS | SRCS DRCS SRCS DRCS SRCS DRCS . SRCS

Components
Integration

Homogeneous RCS Consist of identical components commu-
nicating over identical information links.

Heterogeneous RCS Consist of different types of identical
components communicating over different types o links.

Fine Grained RCS Consist of components performing
elementary operation on 1-bit wide operands.

Course Grained RCS Consist of components performing
macro-operations on multi-bit operands (words).

Hybrid RCS Consist of fine grained and course grained
and associated links.

Statically Reconfigurable RCS Assumes architecture re-
configuration at start-up of each mode of operation.

Main Configuration Memory

My My | M3 | M, ‘ o ‘ a ‘ . |M1
Adds
FPGA. Configuration |
Configuration — <m— Components
Memory P

Figure 4: Statically Reconfigurable RCS stops all system and
then reconfigures. This is one of the disadvantage.

Dynamically Reconfigurable RCS Assumes that part ar-
chitecture can be reconfigured when the rest of the architecture
continues non-stop operation.

Task Mode is one of possible combination of the algorithm
and/or data structure.

720p(1024 x 720) pizels 60fps/120 &)

1080p(1920 x 1080) pizels 60fps/120)

IV. LECTURE 4: 15t OCTOBER 2015

Task Mode One of possible variant of algorithm & one of
possible variant of data structure. Task modes are smaller tasks
that need to be taken in order to complete the given task. For
example, if the task is to fly to London from Toronto, the task
modes can be driving to airport, boarding, flying, and finally
landing. Additionally, task modes taken in order to complete
task can change depending upon the required specification. For
example, if the task is to fly to London from Toronto in ship.
Then, the task modes will change to driving to docks, boarding
the ship, cruising, and finally arriving.

Task Segment It is the part of a task or task mode
associated with given part of algorithm and data structure
initiated by certain event and terminated by completion or
termination terminal event. In other words, it is sub-routine.

Task segmentation does not depend on task implementation.
Implementation depends on task segmentation and technical
specification. As a result , task segmentation is also known as
functional specification.

Computers are information processing machines, humans
are sense processing machines. Humans retrieve sense out of
information. Machines processes sense and information.

A. Implementation of a task segment

It can be implemented using resources associated with
functionalities in the segment. It can be done in space and

in time. It always requires BOTH space and time. The real
question is how much of each.

Temporal Implementation: Tasks implemented exploiting
time division. Tasks are taken in small chunks and executed
one-at-a-time. Conventional CPUs perform tasks in time di-
vided chunks one at a time. This time division is called clock
cycle.

Spacial Implementation: Tasks implemented exploiting
spacial division. Large chunks of tasks are implemented in
actual hardware and executed in parallel. This kind of imple-
mentation is the basics of reconfigurable computing systems.

Temporal Partitioning: Temporal Partitioning of resources
assumes mapping of different task segments set of resources
in different periods of time.

Events occur at moments of time and two events “intitializa-
tion” event/moment and ”termination” event/moment. Between
these two events, is a time define as a period. Initialization and
termination events/moments cannot occur at the same time,
should occur one after another, and always in per-determined
order.

Spacial Partitioning: Spacial Partitioning of resources is
distribution of different parts of resources between different
task segments in spacial domain.

B. Performance Acceleration

1) Instruction Level Parallelism (ILP): where the control
information can be executed in parallel to data execution.

(a) Harvard architecture

central |__address bus dara

processing unit memary
(cpu) (BT
volatile

(b) von Neumann architecture ROM
address bus

central RAM
processing unit

(CPU) ﬁ single
memory

space

Figure 1.3: Harvard and von Neumann architectures for memory.

Figure 5: Differences between Harvard architecture and von
Neumann architecture showing requirement of additional buses

Results in architecture: 2 types of memory (Instruction and
data) and two associated buses.

2) Data Level Parallelism (DLP): where data structure
reflects natural parallelism and therefore can be divided on
several segments to be processed simultaneously.

SIMD Single Instruction Multiple Data architecture utilizes
data parallelism.

3) Branch Parallelism: where several branch of algorithm
task segments can be executed in parallel simultaneously.
C. Example

Let’s take the following function to be executed by the
processor:

V=3 ((ai+0)" x Ky + (i + i)’ x Kz) (6)
i=1

s| Move c¢_i,

where 1 = 1,2,3,....1024

The assembly code for performing this function in proces-
sor looks something like the following:

PROGRAM

3| Add

Clear R5; \\(Result Accumulation)
Clear i = 0; \\(Clear pointer i)

;| Move a_i, RI1;

Move b_i, R2;
R3;
Move d_i, R4;
Add ;
Add
Add
Add R
Add RI1,
Add
R5;

Add R4,

5| Increment 1i;

if i < 1025 goto line 3;

Let’s calculate how much time a normal micro-processor
takes to calculate result:

Tewe(CSIS) =2 ilatency+ 10 isimple +4 iresult %1024 (7)

where #j4tency 18 instruction latency (time taken) to clean up
previous instructions and pointers, %gmpie is the number of
clock cycles taken for executing a simple instruction, and
iresult 18 the number of clock cycles taken to store the result.
Therefore for this example,

Toue (CSIS) = 2% [10 X Be.c. 4 x 60.0.} % 1024 = T5786c.c.
3

V. LECTURE 5: 8" OCTOBER 2015
A. Potential speedup of pipelined data instruction execution

Data Level Parallelism (DLP) Assuming that data struc-
ture is an array of independent data elements. Each of which
should be executed according to set of functions f1, f2, f3...fn,
the speedup can be determined as follows:

Function |F1 |F2 |F3 |F4 |F5 |F6 |F1|F2 |F3 |F4 |F5|F6 |F1
Data
Element
D1 F1 |F2 |F3 |F4 |F5 | F6
D2 F1 |F2 |F3 [F4 | F5 | F6
D3 F1 |F2 |F3 |F4 |F5 | F6
D4 F1 |F2 |F3 [F4 |F5 | F6
Latency ~ Cycle Time

Figure 6: Data level parallelism. The time it takes for the first
result to come out is called latency. But after that time the
results are pushed out within one clock cycle.

€)

Teze. = /Tlatency + (n -]-) X Teycle

where n is number of data elements in array

B. Speedup of pipelined data path over non-pipelined (sequen-
tial) data-path

non—mpipelined
TEIEA (10)
where n is number of data elements in array, m is number
of functions to be executed for each element and 7.y is the

cycle time for a function.

=N XM X Teycle

pipetined _ gy (n _ 1) X Togere (1)
X m X X
Speedup = 12X X Teyete =_x7 (12)
<m+n—1) X Teyete m+mn—1
In case when n >> m,
X X
__nxm__nxm_ (13)

m+n—1_ n
.. Speedup is equal to number of functions deployed in the
pipeline.

C. Side Topic: FPGA vs CPLD

FPGA has arrays of universal elements (implemented using
LUTSs) which can be programmed to act as any gate or memory
elements whereas CPLD has arrays of different gates and a
circuit is programmed of how these are connected.

CPLDs have timing issues whereas in FPGA, this problem
is being solved nowadays by internal IPs in FPGA. Therefore,
there is a minimum clock cycle requirement in FPGAs but not
in CPLDs.

The concept of LUT, Look-up-table as universal logic
element
At the time of programming, the LUTs are fed with the truth
table of what needs to implemented and the multiplexers just
forward that to output at run time.

Configurational
Memory Cells Y

Figure 7: Any gate (operation) can be implemented using LUT.
This is the basic building block of FPGA.

D. Acceleration by using spatial parallelism in algorithm
structure (Branch Parallelism)

Very often in the algorithm, there are several operations
which are independent of each other and can be executed in
parallel. These kinds of operations can be speedup by creating
parallel branches.

Y:Z((ai+bi)2XK1+(Ci+d1‘)2XK2> (14)
i=1
Operation a; + b; can be performed in parallel with operation

¢; +d;. Branch level parallelism makes use of both spatial and
temporal parallelism.

C d
\ }I \ /.
==h s
SN -l
C::;Liirctehésf S ; /,,l\ Branches that
2 . 2 1d b ted
operation as : (\x N o x) . ;‘:‘;amﬁeelxecu €
MACRO functions] //lx b H ~ ,lﬁ
PO xk O O xK D
X’T‘/f
\j:)
+
Y

E. Speedup by exclusion of control information execution.
Creation of function specific circuit (ASIC)

Bulffer for data structure (array)

Al + A2

+ /L/' Array of Adders
Reg(C+D)

Array of
Multipliers

Al | A+B A+B

A2 | C+D C+D

A3 Sum1| & [Sum?2

A4 Sum 1 o Sum 2 . First Operation
M1 (A + B)? (A+ B)? . Second Operation
M2 (C + D)? (€ + D)?

M3 (A+B)*x K, [(A+B)*xK,

M4 (€ +D)?x K, | (C+D)*x K,

Figure 8: Whenever each process is finished, a flag is raised
and the next operation starts only when the previous operation
is done and clock cycle is received.

FE Project
Write literature observation project. Use these big places:

1) IEEE Xplore
2) ACM
3) US Patents

Topic: Reconfigurable architecture of application.
Keywords:

1) FPGA
2) Computation
3) Adaptation

Abstract:

e Motivation (problem statement)
e Objective (What is the goal of the project)
e Results (What you did)

Introduction:

e Background (try to analyze about 10-15 abstracts or
as many as possible)

Analytical Part
Summary

VI. LECTURE 7: 29*" OCTOBER 2015
A. Concept of macro-function and functional units

Macro-function (Macro-operation) is function which en-
capsulates relatively complex part of algorithm commonly
used in particular class of applications associated with per-
determined data structure.

Examples

1) IR, FIR FFT etc. in DSP
2) Edge Dets:ction, Color Conversion (eg. Sobel algo-
rithm) (Y CgCR)

Functional Unit is the function-specific computing circuit
optimized for given function or set of functions in such a way
that it satisfies set of performance constraints and minimizes/-
maximizes one parametric objective.

FVy — {PCy}
F‘/iQ — {PCQ}

FV, — {PCk}

FV; => MF; =>

Idea: It may be cost effective to couple micro-processing
module (unit) and reconfigurable logic block (unit), which
can be configured to macro-function specific unit and thus,
accelerate the entire data execution process. This reconfigurable
logic block was called reconfigurable hardware accelerator.

n Algorithm Intensive
Lots of operation on
many data elements
depending on each other

I
‘

I

I

]

0
|
| ‘ Initial Segment H DS,
I
L
1

Computational Intensive
Few operation on data
structures consisting of
lots of independent data
elements

Any task in application may have number of algorithmic
intensive segments and number of architectural intensive seg-
ments.

B. General architecture of Reconfigurable Computing Systems

Component is an information object which represents the
information of associated functional unit in form acceptable for
data-execution platform.

Micro-Processor Macro-Processor

Software processor

i Configurable Logic JTAG
of algorithmically <:::> [CEEESe?
. . T computationally
intensive segments ' P .
' intensive segments
Configuration
Controller

Software Component :
Memory |

Initial Segment Standard 1/0 High Bandwidth 1/0
Interfaces Interfaces
Sk = DS !
USB j Video 1/0 Hardware Component
53 2 DSs ! Memor
PCI Express | Data Memory I/0 Y
S; = DS; ' S1(V1)
SPI GB Network 1/0
S; = DS;
J J S2(V2
Etc... Etc... 222

Sie(Vk)

VII. LECTURE 8: 5" NOVEMBER 2015
A. Virtualization of Computing Architecture

Task segment implementation according to general RCS
architecture

1) Task segment can be implemented in different forms
according to set of constraints as:

e Software (procedural) components (eg. rout-
ing, driver, etc.)
e Hardware (dedicated to segment circuit)

2) Each segment can be implemented in software or
hardware form depending on specification constraints.
Therefore there could be a set of components associ-
ated wit given segment

Ci1 — set of constraints set i 1

Cin — set of constraints set i n

Virtual Component: It is information object representing
given segment (function and data structure) in form which
satisfies all specification constraints. Thus, there can be:

1) Virtual software component (VSC) — software rou-
tine, interrupt service routine, device driver, etc.

2) Virtual Hardware Component (VHC) — configuration
bit file or configuration bit stream.

Actual Systems

Memory

Task

l<—>CPU

Actual Processor & Virtual Memory

Secondary Memory
Memory S
art o —
Task 1 Task 1 CPU
Task 2 |@===P| Partof
Task 2
Task 3
Part of
Task 3

Virtual Processor & Virtual Memory

Virtual Processor

Secondary Memory
Memory ——
art o
Task 1 - VG, | VG T, | VT,
Task 2 &) Partof -
= T:skoz
Task 3 VCy T, VCs Ts
Part of
Task 3 Secondary Storage
for Configuration
Bit Filed
Actual Processor Ve11
Vcl2
C C C; |
1 2 3 ve13
Vc14
Ci | G | GCe

Application Specific Processor (ASP) is the circuit opti-
mized for ASP can be implemented in different form depending
on:

1) Variations in work load

2) Variations in environmental parameters

3) Ratio between algorithmically intensive and compu-
tationally intensive segments of the task

as:

1) ASIC - Application Specific Integrated Circuit (one
hardware component) for cases when no variations of
workload exist (mono-task) and most of task segments
are computationally intensive.

2) ASIP - Application Specific Instruction Processor
(CPU + hardware accelerator) for applications where
workload is dynamic but most of segments are algo-
rithmically intensive.

3) ASVP - Application Specific Virtual Processor gen-
eral form of any processor architecture for cases when
workload and environmental constraints are dynamic.

ASVP — How to integrate VHCs and VCSs ?

VIII. LECTURE 9: 12¢* NOVEMBER 2015
A. Architecture Organization of ASVP in on-chip level of RCS

DPR (Dynamically Partially Reconfigurable) Systems

1) Statically reconfigurable SoPC (System-on-
Programmable Chip): Applicable (effective solution) in
case when:

1) Number of modes are in range of 4-5 to 40-50.

2) Period of time allowed for mode switching is
greater than complete reconfiguration time for target
FPGAC(s).

Why is it effective ?
Let’s take the following application example:-
Application
2000 system gates are static part in all application modes.
(Example system Clock distribution circuit and other common
stuff)
Mode 1 10,000 requires system gates
Mode 2 8,000 requires system gates
Mode 3 9,500 requires system gates
Mode 4 12,000 requires system gates
Mode N 6,500 requires system gates

System Gates Required to implement system ==========

10K - 2K = 8K
8K - 2K = 6K
9.5K - 2K = 7.5K

12K - 2K = 10K
6.5K - 2K = 4.5K

T = 36K
+ 2K
38K

32Bit 64 Bit Min Configuration Time = —mi

326b/s

= 1ms

_ s
1000
Mode Flash Memory
Address

Configuration Bit File
for Mode 1

Configuration Bit File
for Mode 2

Configurable Part of
the FPGA

Configuration
Controller Configuration Bit File

for Mode 3

Volume of Bit-file for
any mode = 3.2MB

Configuration Bit File

External for Mode 4 -

Source

Figure 9: Offline reconfiguration of the FPGA

2) Dynamically SoPC

Programmable Chip):

reconfigurable (System-on-

1) With temporally reconfigurable resources
2) With spatially reconfigurable resources

Temporally run-time reconfigurable RCS

1s

—— =16. 16
10 frames 0.66ms (16)

Teycle =

Example:

XGA Resolution = 1024 x 768 = 0.8 Mpixels (17)

Execution Time = 0.8M X lpixel/cc. x 5ms/ce. (18)
=0.8x10°x5x107% =4 x 10 3ms (19)

Timing diagram for temporally reconfigurable RCS

S3 ->VHC3

S7 ->VHC7

Figure 10: Example Application of Temporally run-time recon-
figurable RCS

Data Input

Process ‘ Inter-frame _{

- Data Structure Ni
Period

Data Structure Ni ‘<

Execution Load Execution

Load Execution Load Execution

Data Output
Process

L
Tf Tf Tf Tf I
1
1

Data Structure Ni

Spatially reconfigurable RCS
The entire space of resources (Field of Configurable Resources)
is divided on slots (identical or non-identical) each of which
is dedicated on segment specific component configured by
respected VHC.

IX. LECTURE 10: 19" NOVEMBER 2015

A. Important Dates

e November 19

e November 26 0.5 + 0.5 Review

e December 3 Final Exam

B. Spatially Reconfigurable RCS

Each task is considered as segment. Macro-Function Unit
(MFU).

Field of Reconfigurable Resources

Partially
Reconfigurable
Regions

PRRs

On-Chip

| Configuration
Memory

Field of Reconfigurable Resources Macro-Functional Units 32 X 109

Task 1 — o~ 32X 10%bits/sec Q1
S1
| Re MFU 32 x 103bits/sec 4 x 108
= = = 381.46 M B
\ Task 2 uFy 1024 x 1024 x 1024 1024 x 1024 / (52620)
MFU
¥ 1312) g\; MFU Clock Frequency =400 M Hz (23)
"’ L0 e = 2.5n5 (24)
s3 s7 Wy)
"l RE RE MEU Cycle Time = 4c.c. X Te.. = 10 ns (25)
Om-Chip Configuration Memory ‘C’:)r;:‘:;f‘;r:“gj‘;"c] bt XGA Video Frame = 1024 x 768 x 24bits/pizel (26)
s1 <4 s7 [s10 / File of MFUs) 1
s2 | s5 | s8 | si1 / Compile Q60fps : tframe = — = 16.66 ms/ frame 27
S3 S6 S9 S12 60

16.6 ms
= = 1.13bit = Gbits/c. 28
1024 x 768 x 24 bits its/ns = Gbits/c.c (28)
C. RCS Development Process
tee =200 MHz, 7. .. = bns 29)
Is divided on:

Cycle Time = 4c.c. =4 x 5 ns = 20 ns (30)

1) Analysis of functional and technical specification 1.13 bit
Analysis of Functional Specification: Description of 20 ns X 210 oS 20.26 = 21bits/cycle (31)

workload: algorithm and data-structure segmentation
according to events(modes of operation) and data-

structure associated with algorithm segments. E. Some points about project

Analysis of Technical Specification: ~ Determination 1) Initiation (Enable/Set) and Termination (Disable/Re-
of performance constraints for each segment multi- set)

objective. Example: For video processing, vertical synchroniza-
Sets of Components and determination SW or HW tion, horizontal synchronization are initiation(low-
implementation. level). Termination (High-Level) Signals and symbols

of component.
2) Design of Hardware Components 2) Data-in Synchronization
Input is: Functional specification for Task 3) Data-out Synchronization

segmentation associated with this component.

Technical Specification for Task segmentation
associated with this component.
Output is: High level — symbol and scheduled
—_— . . Data In Structure Data Structure Out
sequencing graph binded with resources. itializati —) bol —eee)>
Low level — configuration bit-file for the component r%le;?nlizfaéfo';/ ———> R Valid/Busy
Signals — —
3) Component Design Process —tnable | Ready
a) Determination of component’s bandwidth: In- Reset
put bandwidth & Output bandwidth.
b) Determination of component’s synchroniza-
tion and Control proceduresl X LECTURE 1 1: 26th NOVEMBER 2015
4) Component’s Interface Determination Function-specific Architecture Design
5) Symbol of Component Example of function: Video-frame color compaction (R, G,
. B — enhanced B/W image)
6) Entity Part of HDL Code
Vi =k x (R; + B; + G;)? (32)
D. Example
Example of Data Structure: Video-frame XGA — 1024
Input Bus W pixels/row X768 rows.
R, G, B values — 8 bits/pixel in Bayer pattern.
1L Constraints: 120 fps
/ey
/ = A. Creation of Sequencing and Scheduling Graph
Sequencing graph is not interruptible. In other words, when

you started instruction execution, nothing can interrupt in

Cycle Time 4c.c. between.

a;, bi, c;,d; each 8 bits
4 x 8bits 32 bits

Input Bandwidth = =
nput Banduwt 10 ns 10x10-9 s

(20)

Figure 11: This type of sequencing graph should be drawn for
application before implementation to analyze the specifications
of design and finalizing implementation.

B. Creation of Timing(Scheduling) Diagram

to
: 1 1 1 1 1 1
A1 1 R+B| X |R+B : : : : : :
1 1 1 1 1 | 1
T T T 1 1 1 1
: : 1 1 1 1 1
A, i X A+G| X [A+G | : | ! !
1 1 1 I I ' '
1 1 1 - + 1 1 1
1 1 1 AI) AI) 1 | 1
1 1 1
M 1 1 1 1 ¢ :) (? : : :
.
1 1 1 1 1 1 1 1
1 1 1 1 1 [}
M2 1 | I 1 1 kﬁ k:A :
1 1 1 1 | 1 L L
Latency Cycle Time
First _— Y1 YZ
Output

Figure 12: In this type of implementation The adders are having
some free time. It may be a good idea to use one adder
and do both of connection. However, this immediately means
multiplexing the inputs and outputs in time to prevent short
circuits. Eg. In one cycle, the output of the adder is connected
to a register to store the intermediate value and in another cycle,
the output is connected to M1. (Multiplexing output)

Play Tetris with the timing graph to adapt and fit as many
operations as possible to get fastest possible output.

™~
fley
=
+
w

I |
I |
1 L
I |
1 1
A+G|R+B |A+G : !
1
T l
1 1 1 1 |
| I 1 |Z e 1 \
1 I 1 Al
Ml 1 1 1 (:) (: : :
: ; .
1 1 1 1 1 1 1 1
1 1 1 1 1)
M, I i I | | kA KA |
1 1 1 1 | 1 L L
Latency Cycle Time
First _— Yl YZ
Output

Figure 13: A Single adder can replace Al and A2 and do the
job of both adders. However there is addition of multiplexer
hardware to multiplex input and output.

C. Creation of Block Diagram

Then a block diagram is drawn according to scheduled and
binded sequencing graph.

| RegR | RegB | RegG |

A ! ~ .

Nomux S \ MUX / \ MULTIPLIER 1 /
/

\\\ ADDER [Lawhmt | [k
v v

_ MULTIPLIER 2

]
]

Y;

Figure 14: The scheduling diagram does not contain time
consumed by wrappers which are used to latch or control data
such as a Latch. These times are revealed after drawing a block
diagram.

	Lecture 1: 10th September 2015
	Computation Process & Architecture

	Lecture 2: 17th September 2015
	Correspondence between the task and computing architecture
	Concept of computing systems with programmable procedure
	Concept of processors with control information integrated in data-path: Application Specific Integrated Circuits (ASIC)
	Classification of Computing Systems
	General Organization of Programmable Logic Device Hardware platform of RCS

	Lecture 3: 24th September 2015
	Lecture 4: 1st October 2015
	Implementation of a task segment
	Performance Acceleration
	Instruction Level Parallelism (ILP)
	Data Level Parallelism (DLP)
	Branch Parallelism

	Example

	Lecture 5: 8th October 2015
	Potential speedup of pipelined data instruction execution
	Speedup of pipelined data path over non-pipelined (sequential) data-path
	Side Topic: FPGA vs CPLD
	Acceleration by using spatial parallelism in algorithm structure (Branch Parallelism)
	Speedup by exclusion of control information execution. Creation of function specific circuit (ASIC)
	Project

	Lecture 7: 29th October 2015
	Concept of macro-function and functional units
	General architecture of Reconfigurable Computing Systems

	Lecture 8: 5th November 2015
	Virtualization of Computing Architecture

	Lecture 9: 12th November 2015
	Architecture Organization of ASVP in on-chip level of RCS
	Statically reconfigurable SoPC (System-on-Programmable Chip)
	Dynamically reconfigurable SoPC (System-on-Programmable Chip)

	Lecture 10: 19th November 2015
	Important Dates
	Spatially Reconfigurable RCS
	RCS Development Process
	Example
	Some points about project

	Lecture 11: 26th November 2015
	Creation of Sequencing and Scheduling Graph
	Creation of Timing(Scheduling) Diagram
	Creation of Block Diagram

