
RYERSON UNIVERSITY
DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

4K Ultra-HD Video Noise Reduction System

Muhammad Obaidullah - 500671408
mobaidullah@ryerson.ca

Abdullah Siddiqui - 500390829
abdullah.siddiqui@ryerson.ca

Adeem Mustafa - 500733414
adeem.mustafa@gmail.com

Dr. Lev Kirischian
lkirisch@ee.ryerson.ca

Electrical & Computer Engineering Department, Ryerson University,
Toronto, M5B 2K3, Canada

December 19, 2015

Abstract

4K resolution video recording is becoming the facto standard for professional high definition video. In this pa-
per we design, discuss, and implement a multi-modal application consisting of FIR filter and RGB-to-GrayScale
Converter modes operating on 4K resolution 60 fps video capable of either reducing noise or converting RGB
to gray-scale.

1 PROJECT SPECIFICATIONS

1.1 FUNCTIONAL SPECIFICATIONS

Total No. of Application Modes 2
Simultaneous Application Modes No
Application Modes Noise Reduction Mode & Gray-scale Mode
Color Resolution (R,G,B) 8-bit
RISC/CISC Execution clock cycles for Multiplication 4 c.c.
RISC/CISC Execution clock cycles for Add/Clear...etc. 1 c.c.
Hardware clock cycles for Multiplication 2 c.c.
Hardware clock cycles for Addition 1 c.c.

1.1.1 NOISE REDUCTION MODE

Red Channel output is given by:

YR(x, y) =

∑i=x+1
i=x−1

∑j=y+1
j=y−1 PR(i, j)

9
(1.1)

Green Channel output is given by:

YG(x, y) =

∑i=x+1
i=x−1

∑j=y+1
j=y−1 PG(i, j)

9
(1.2)

1

mobaidullah@ryerson.ca
abdullah.siddiqui@ryerson.ca
adeem.mustafa@gmail.com
lkirisch@ee.ryerson.ca

Blue Channel output is given by:

YB(x, y) =

∑i=x+1
i=x−1

∑j=y+1
j=y−1 PB(i, j)

9
(1.3)

1.1.2 GRAY-SCALE MODE

Gray Channel output is given by:

YGray(x, y) = 0.3× PR(x, y) + 0.59× PG(x, y) + 0.11× PB(x, y) (1.4)

Figure 1.1: Three possible implementations.

1.2 TECHNICAL SPECIFICATIONS

Performance 60 fps
Resolution 4K = 3840× 2160 = 8, 294, 400 pixels/frame

Total Application Modes 2 (Noise Reduction Mode & Gray-scale Mode)
Logic Cells (Noise Reduction Mode) 58,150
Logic Cells (Gray-scale Mode) 49,895
Logic Cells (Base Mode) 17,503

Two modes of operation (Noise Reduction Mode & Gray-scale Mode) require base mode logic to operate.
Available FPGA devices in the market:

2

Figure 1.2: All prices are taken from Digi-Key Electronics Canada. 0% discount for 100 units, 15% discount for 1000 units,
and 20% discount for 10,000 unit

2 RISC/CISC SOFTWARE IMPLEMENTATION

Address Operation Operand 1 Operand 2 Result location
0x10000 Load C1 in Mem[1F00002] Store result in Reg. A
0x10002 Load C2 in Mem[1F00004] Store result in Reg. B
0x10004 Load C3 in Mem[1F00006] Store result in Reg. C
0x10006 Load C4 in Mem[1F00008] Store result in Reg. D
0x10008 Load C5 in Mem[1F0000A] Store result in Reg. E
0x1000A Load C6 in Mem[1F0000C] Store result in Reg. F
0x1000C Load C7 in Mem[1F0000E] Store result in Reg. G
0x1000E Load C8 in Mem[1F00010] Store result in Reg. H
0x10010 Load C9 in Mem[1F00012] Store result in Reg. I
0x10012 Load Operand in X 1F00000 Store result in Reg. X
0x10014 Load PR1 in Mem[X] + 0 Store result in Reg. PR1
0x10016 Load PR2 in Mem[X] + 1 Store result in Reg. PR2
0x10018 Load PR3 in Mem[X] + 2 Store result in Reg. PR3
0x1001A Load PR4 in Mem[X] + 3 Store result in Reg. PR4
0x1001C Load PR5 in Mem[X] + 4 Store result in Reg. PR5
0x1001E Load PR6 in Mem[X] + 5 Store result in Reg. PR6
0x10020 Load PR7 in Mem[X] + 6 Store result in Reg. PR7
0x10022 Load PR8 in Mem[X] + 7 Store result in Reg. PR8
0x10024 Load PR9 in Mem[X] + 8 Store result in Reg. PR9
0x10028 Multiply Operand in PR1 Operand in A Store result in Reg. PR1
0x1002A Multiply Operand in PR2 Operand in B Store result in Reg. PR2
0x1002C Multiply Operand in PR3 Operand in C Store result in Reg. PR3
0x1002E Multiply Operand in PR4 Operand in D Store result in Reg. PR4
0x10030 Multiply Operand in PR5 Operand in E Store result in Reg. PR5

3

0x10032 Multiply Operand in PR6 Operand in F Store result in Reg. PR6
0x10034 Multiply Operand in PR7 Operand in G Store result in Reg. PR7
0x10036 Multiply Operand in PR8 Operand in H Store result in Reg. PR8
0x10038 Multiply Operand in PR9 Operand in I Store result in Reg. PR9
0x1003A Add Operand in PR1 Operand in PR2 Store result in Reg. J
0x1003C Add Operand in PR3 Operand in PR4 Store result in Reg. K
0x1003E Add Operand in PR5 Operand in PR6 Store result in Reg. L
0x10040 Add Operand in PR7 Operand in PR8 Store result in Reg. M
0x10042 Add Operand in J Operand in K Store result in Reg. N
0x10044 Add Operand in L Operand in M Store result in Reg. O
0x10046 Add Operand in N Operand in O Store result in Reg. P
0x10048 Add Operand in P Operand in PR9 Store result in Reg. YR
0x1004A Store Operand in YR Result in Mem[X] + 9
0x10042 Load PG1 in Mem[X] + 10 Store result in Reg. PG1
0x10044 Load PG2 in Mem[X] + 11 Store result in Reg. PG2
0x10046 Load PG3 in Mem[X] + 12 Store result in Reg. PG3
0x10048 Load PG4 in Mem[X] + 13 Store result in Reg. PG4
0x1004A Load PG5 in Mem[X] + 14 Store result in Reg. PG5
0x1004C Load PG6 in Mem[X] + 15 Store result in Reg. PG6
0x1004E Load PG7 in Mem[X] + 16 Store result in Reg. PG7
0x10050 Load PG8 in Mem[X] + 17 Store result in Reg. PG8
0x10052 Load PG9 in Mem[X] + 18 Store result in Reg. PG9
0x10054 Multiply Operand in PG1 Operand in A Store result in Reg. PG1
0x10056 Multiply Operand in PG2 Operand in B Store result in Reg. PG2
0x10058 Multiply Operand in PG3 Operand in C Store result in Reg. PG3
0x1005A Multiply Operand in PG4 Operand in D Store result in Reg. PG4
0x1005C Multiply Operand in PG5 Operand in E Store result in Reg. PG5
0x1005E Multiply Operand in PG6 Operand in F Store result in Reg. PG6
0x10060 Multiply Operand in PG7 Operand in G Store result in Reg. PG7
0x10062 Multiply Operand in PG8 Operand in H Store result in Reg. PG8
0x10064 Multiply Operand in PG9 Operand in I Store result in Reg. PG9
0x10066 Add Operand in PG1 Operand in PG2 Store result in Reg. J
0x10068 Add Operand in PG3 Operand in PG4 Store result in Reg. K
0x1006A Add Operand in PG5 Operand in PG6 Store result in Reg. L
0x1006C Add Operand in PG7 Operand in PG8 Store result in Reg. M
0x1006E Add Operand in J Operand in K Store result in Reg. N
0x10070 Add Operand in L Operand in M Store result in Reg. O
0x10072 Add Operand in N Operand in O Store result in Reg. P
0x10074 Add Operand in P Operand in PG9 Store result in Reg. YG
0x10076 Store Operand in YG Result in Mem[X] + 19
0x10078 Load PB1 in Mem[X] + 20 Store result in Reg. PB1
0x1007A Load PB2 in Mem[X] + 21 Store result in Reg. PB2
0x1007C Load PB3 in Mem[X] + 22 Store result in Reg. PB3
0x1007E Load PB4 in Mem[X] + 23 Store result in Reg. PB4
0x10080 Load PB5 in Mem[X] + 24 Store result in Reg. PB5
0x10082 Load PB6 in Mem[X] + 25 Store result in Reg. PB6
0x10084 Load PB7 in Mem[X] + 26 Store result in Reg. PB7
0x10086 Load PB8 in Mem[X] + 27 Store result in Reg. PB8
0x10088 Load PB9 in Mem[X] + 28 Store result in Reg. PB9
0x1008A Multiply Operand in PB1 Operand in A Store result in Reg. PB1

4

0x1008C Multiply Operand in PB2 Operand in B Store result in Reg. PB2
0x1008E Multiply Operand in PB3 Operand in C Store result in Reg. PB3
0x10090 Multiply Operand in PB4 Operand in D Store result in Reg. PB4
0x10092 Multiply Operand in PB5 Operand in E Store result in Reg. PB5
0x10094 Multiply Operand in PB6 Operand in F Store result in Reg. PB6
0x10096 Multiply Operand in PB7 Operand in G Store result in Reg. PB7
0x10098 Multiply Operand in PB8 Operand in H Store result in Reg. PB8
0x1009A Multiply Operand in PB9 Operand in I Store result in Reg. PB9
0x1009C Add Operand in PB1 Operand in PB2 Store result in Reg. J
0x1009E Add Operand in PB3 Operand in PB4 Store result in Reg. K
0x100A0 Add Operand in PB5 Operand in PB6 Store result in Reg. L
0x100A2 Add Operand in PB7 Operand in PB8 Store result in Reg. M
0x100A4 Add Operand in J Operand in K Store result in Reg. N
0x100A6 Add Operand in L Operand in M Store result in Reg. O
0x100A8 Add Operand in N Operand in O Store result in Reg. P
0x100AA Add Operand in P Operand in PB9 Store result in Reg. YB
0x100AC Store Operand in YB Result in Mem[X] + 29
0x100AE Add Operand in X Constant = 30 Store Result in Reg. X
0x100B0 GOTO Address 0x10014 If X < 8294400 Else GOTO Next

3 INTRODUCTION

4K resolution, which is officially referred to as UHD (Ultra-high definition), offers at least 4 times as many pixels as regular
HDTV. This leads to greater image clarity and more varied and realistic colors at higher frame rates. A 4K display has a
resolution of 3840 pixels (horizontally) × 2160 pixels (vertically) where the horizontal resolution can go up to 4000 pixels.

Figure 3.1: Dimensions of 4K resolution frame.

Therefore, total number of pixels in one frame of the 4K video is given by:

Fpixels = width in pixels× height in pixels

Fpixels = 3840× 2160 = 8, 294, 400 pixels/frame

If each pixel is composed of Red (R), Green (G), and Blue (B), where each channel pixel is 8 bits wide. The total bits for
one frame is as follows:

Fbits = 8, 294, 400× 3× 8 = 199, 065, 600 bits/frame

4 THEORY

5

Figure 4.1: The sequencing graph for the red channel has been shown in detail. The sequencing graphs of blue and green
channels have not been shown to avoid redundancy.

4.1 SEQUENCING GRAPH FOR FIR FILTER

4.2 SEQUENCING GRAPH FOR RGB-GRAY-SCALE CONVERTER

Figure 4.2: The sequencing graph for the RGB-to-Gray-scale converter can be seen in the above figure.

4.3 IMPLEMENTATION ON CISC NON-PIPELINED PROCESSOR

4.3.1 TOTAL NUMBER OF CLOCK CYCLES FOR ONE PIXEL CALCULATION

No. of multiply instructions:
NMultiply = 27

Clock cycles taken by multiply instructions:

τMultiply = 27× 8 c.c. = 216

No. of Add/Store/Clear...etc. instructions:
NNormal = 56

6

Clock cycles taken by multiply instructions:

τNormal = 56× 5 c.c. = 280

Total number of clock cycles for 1 pixel calculation:

τone pixel = 216 + 280 = 496 c.c.

4.3.2 TOTAL NUMBER OF CLOCK CYCLES FOR ONE FRAME CALCULATION

No. of pixels in one frame:
Fpixels = 3840× 2160 = 8, 294, 400 pixels/frame

Time taken for calculation of all pixels in the frame:

τframe = 8, 294, 400× 496 = 4, 114, 022, 400 c.c.

4.3.3 REQUIRED OPERATING FREQUENCY FOR MEETING 60FPS SPECIFICATION

Clock signals required for calculating 60 frames in one second:

frequired = 4, 114, 022, 400 c.c.× 60frames/sec ≈ 246.84 GHz

The frequency obtained is unreasonably high. Hence, this implementation is not possible.

4.4 IMPLEMENTATION ON RISC PIPELINED PROCESSOR

4.4.1 PIPELINE DIAGRAM

Pipeline diagram given in appendices.

4.4.2 TOTAL NUMBER OF CLOCK CYCLES FOR ONE PIXEL CALCULATION

Total number of clock cycles for 1 pixel calculation:

τone pixel = 57c.c.+ 2× (57 + 2)c.c.+ 5c.c.+ 5c.c. = 185c.c.

4.4.3 TOTAL NUMBER OF CLOCK CYCLES FOR ONE FRAME CALCULATION

No. of pixels in one frame:
Fpixels = 3840× 2160 = 8, 294, 400 pixels/frame

Time taken for calculation of all pixels in the frame:

τframe = 8, 294, 400× 185 ≈ 1, 534, 464, 000 c.c.

Frequency required to deliver 60fps:

foperating = 60fps× 1, 534, 464, 000 c.c. ≈ 92.07GHz

The value obtained suggests that there will be an extraordinary amount of power expenditure at this operating frequency.

4.5 IMPLEMENTATION ON STATICALLY CONFIGURED FPGA

Mode Name Total Logic Cells
Noise Reduction Mode 58, 150

Gray-scale Mode 49, 895

Base Mode 17, 503

Total Logic to fit 125, 548

Therefore, the best lowest cost FPGA that fits our design is Artix-7 XC7A200T.

7

4.5.1 FREQUENCY REQUIRED ON FPGA FOR NON-PIPELINED IMPLEMENTATION

Implementation without data division
Clock cycles required to calculate 1 pixel:

τpixel = τmultiplication + τaddition stage 1 + τaddition stage 2 = 2c.c.+ 2c.c.+ 2c.c. = 6c.c.

Clock cycles required to calculate 1 frame:

τframe = τpixel × 8, 294, 400 pixels/frame = 49, 766, 400c.c.

foperating = 60fps× 49, 766, 400c.c. = 2, 985, 984, 000Hz ≈ 2.99GHz

However, if we divide the 4K resolution into 4 large chunks where each chunk is processed by separate hardware, we will
only need 1/4 of foperating.
Implementation with data division
Clock cycles required to calculate 1 pixel:

τpixel = τmultiplication + τaddition stage 1 + τaddition stage 2 = 2c.c.+ 2c.c.+ 2c.c. = 6c.c.

Clock cycles required to calculate 1 frame portion:

τframe = τpixel × 2, 073, 600 pixels/frame portion = 12, 441, 600c.c.

foperating = 60fps× 12, 441, 600c.c. = 746, 496, 000Hz ≈ 746.50MHz

4.6 FREQUENCY REQUIRED ON FPGA FOR PIPELINED IMPLEMENTATION

Implementation without data division
Clock cycles required to calculate 1 pixel:

τpixel = τmultiplication + τaddition stage 1 + τaddition stage 2 = 2c.c.+ 2c.c.+ 2c.c. = 6c.c.

From the scheduling diagram, we can see that:
τlatency = 6c.c. (4.1)

τcycle time = 2c.c. (4.2)

Clock cycles required to calculate 1 frame:

foperating = τlatency + τcycle time × (8, 294, 400− 1) pixels/frame = 6 + 2× (8, 294, 399) ≈ 995.33MHz

However, if we divide the 4K resolution into 4 large chunks where each chunk is processed by separate hardware, we will
only need 1/4 of foperating.
Implementation with data division
Clock cycles required to calculate 1 pixel:

τpixel = τmultiplication + τaddition stage 1 + τaddition stage 2 = 2c.c.+ 2c.c.+ 2c.c. = 6c.c.

From the scheduling diagram, we can see that:
τlatency = 6c.c. (4.3)

τcycle time = 2c.c. (4.4)

Clock cycles required to calculate 1 frame portion:

τframe = τlatency + τcycle time × (2, 073, 600− 1) pixels/frame portion = 6 + 2× (2, 073, 599) = 4, 147, 204c.c.

foperating = 60fps× 4, 147, 204c.c. = 248, 832, 240Hz ≈ 248.83MHz

8

4.7 IMPLEMENTATION ON DYNAMICALLY CONFIGURED FPGA (RCS)

Mode Name Total Logic Cells
Noise Reduction Mode 58, 150 + 17, 503 = 75, 653

Gray-scale Mode 49, 895 + 17, 503 = 67, 398

Largest Logic to fit 75, 653

Therefore, the best lowest cost FPGA that fits our design is Artix-7 XC7A100T.

5 SYSTEM DESIGN

Figure 5.1: Block diagram of the proposed system with 3 major components.

A noisy raw video frame is sent to the Image Window Generator which divides the frame into specific rectangular sub-
regions and allows local processing of video data within these target areas. The FIR filter designed using the window method
suppresses the noise and produces a noise free video frame. The raw frame is also passed through a RGB-to-Grey scale
converter which converts it to gray-scale.

Figure 5.2: sub-components connection in video noise reduction component.

9

The components of the video noise reduction component are depicted in Figure 5.2. The clock is used as a strobe for R, G
and B input values. The image window generator receives the input data. VSY NC. and HSY NC. on the Window Generator
and FIR filter symbols are used as initiation signals.After data for the entire frame is sent, VSY NC. pulses to denote the end
of frame. HSY NC. denotes the end of row when data for the entire row is sent. BUSY is used by the following components to
ensure proper processing of data. VALID checks and validates data being passed on to the following sub-component. RESET
on both blocks functions as an asynchronous termination signal.

Figure 5.3: Data handling in filter.

The noisy frame is decomposed into R, G and B channels. After passing the raw frame through the window generator, local
processing within the target areas involves calculations on the surrounding pixels to calculate the optimal value for the center
pixel. The channels are merged for producing the noise free image.
If we are looking for a performance of 60 fps at 4K resolution:

dspeed =
199, 065, 600× 60 bits/sec

8× 1024× 1024
= 1423.83MB/sec

dspeed ≈ 1.42 GB/sec

6 IMPLEMENTATION ON CPU

The following MATLAB code was written and the total time for filtering randomly generated Gaussian noise was recorded.

1 % Read 4K image
imageWithNoise = imread (’ imageWithNoise . j p g ’) ;

3 % C r e a t e a 3x3 low p a s s FIR f i l t e r
l p f = [1 / 9 1 / 9 1 / 9 ; 1 / 9 1 / 9 1 / 9 ; 1 / 9 1 / 9 1 / 9] ;

5 % Pass t h e image t h r o u g h t h e f i l t e r
o u t p u t = i m f i l t e r (imageWithNoise , l p f

10

Figure 6.1: Left: Clean image without noise. Center: Image with noise. Right: Filtered image.

11

It takes 2.015 seconds to process one 4K resolution frame in CPU implementation. In other words, the frame rate is ≈ 0.5fps.
Which is 12 times slower than required performance.

7 IMPLEMENTATION ON FPGA

7.1 NON-PIPELINED BLOCK DIAGRAM OF FIR FILTER

Figure 7.1: The figure above shows the detailed non-pipelined block diagram for the Red channel of the FIR filter.

There are 9 pixels (P1,.....P9) and each pixel is multiplied by its corresponding constant (C1,, C9) through a multiplier.
The results of each of the multiplications are stored in registers (Reg A,....., Reg I). Pairs of register values (Registers A and
B, C and D, E and F and G and H) are then passed through adders. The resultant values are then stored in registers (Reg
J,....., Reg M). The values in these registers are then fed to adders. The values generated from addition are then stored in
registers N and O. The values in registers N and O are again passed through an adder which produces a value that gets stored
in register P. Finally, values in registers P and I are added together and the final resultant value for the red channel gets stored
in register YR. The multiplication step takes 2 clock cycles and each of the addition steps takes 1 clock cycle. The green and
blue channels go through the same process and processes for all 3 channels occur parallel to each other.

7.2 NON-PIPELINED BLOCK DIAGRAM OF RGB TO GRAY-SCALE CONVERTER

12

Figure 7.2: Non-pipelined block diagram for the RGB-to-Grayscale converter. It can be explained in the same way as Fig.
7.1

7.3 PIPELINED BLOCK DIAGRAM OF FIR FILTER

The adders in the hardware block diagram shown in Fig. 7.1 are not being utilized completely. When the bit values are
passing through the hardware units during the calculation process, the adders which have performed their function remain
unused. The pipelined block diagram solves this problem by using the technique of optimal pipelining. The pipelined
solution works in the following way: Each of the 9 pixels (P1,...., P9) is multiplied with its corresponding constant (C1,
....., C9). The resulting values are stored in Registers A to I. Each of the registers is now engaged. The register values are
passed through multiplexers which are again passed through adders. The resulting values which are stored in Registers J, K
an L. Each of these register values is passed through demultiplexers which either pass the resulting output to the following
multiplexers or send the values of registers J, K and L back to the previous multiplexers. Initially, the results from J, K and
L are sent back to the multiplexers, go to the adder and given to registers J, K and L. Now, the resulting values are passed
from the demultiplexers to the following multiplexers. The selected values then pass through an adder which stores the
value in register M. The value in register M passes through the demultiplexer from where it first goes back to the preceding
multiplexer. The new values are again passed through the adder and stored in register M. The value from register M is finally
sent to register YR through the demultiplexer. The multiplication step in this scenario takes 2 clock cycles and the addition
step takes 3 clock cycles. The green and blue channels go through the same process and processes for all 3 channels occur
parallel to each other.

13

Figure 7.3: Pipelined block diagram for the Red channel of the FIR filter.

7.4 PIPELINED BLOCK DIAGRAM OF RGB TO GRAY-SCALE CONVERTER

Figure 7.4: Pipelined block diagram for the RGB-to-Grayscale converter. It can be explained in the same way as Fig. 7.3.

7.5 OPTIMAL TIMING DIAGRAM OF FIR FILTER

From this diagram, it can be seen that the very first resulting values (YR, YB and YG) are released after a period of 6 clock
cycles. Following that, the resultant values are obtained after every 2 clock cycles. Hence, the latency in this case is 6 clock
cycles and the cycle time is 2 clock cycles.

14

Figure 7.5: The optimal timing diagram can be seen in Fig. 7.5 and corresponds to the pipe-lined hardware system of Fig.
7.3.

7.6 NON-OPTIMAL TIMING DIAGRAM OF RGB TO GRAY-SCALE CONVERTER

Figure 7.6: Non-optimal timing diagram of RGB to Gray-scale converter. Hardware resources are not being used optimally.

7.7 OPTIMAL TIMING DIAGRAM OF RGB TO GRAY-SCALE CONVERTER

15

Figure 7.7: Optimal timing diagram of RGB to Gray-scale converter. Utilization of hardware resources is now better. La-
tency= 4 c.c. and Cycle time= 2 c.c..

8 DESIGN

8.0.1 FIR COMPONENT BANDWIDTH

Input Bandwidth =
3Bytes× 995.33MHz

2c.c.× 1024× 1024
≈ 1423.831MB/sec (8.1)

Output Bandwidth =
72Bits× 995.33MHz

2c.c.× 8× 1024× 1024
≈ 4271.49MB/sec (8.2)

8.0.2 RGB TO GRAY-SCALE COMPONENT BANDWIDTH

Input Bandwidth =
3Bytes× 995.33MHz

2c.c.× 1024× 1024
≈ 1423.831MB/sec (8.3)

Output Bandwidth =
9Bits× 995.33MHz

2c.c.× 8× 1024× 1024
≈ 533.94MB/sec (8.4)

9 COMPARATIVE ANALYSIS

The two modes of the application were compared with each other and implemented using two different methods. The first
method was to compute the whole frame by using a single hardware processor. The second method involved dividing the
screen into 4 equal regions and a hardware block was assigned to each of these regions running parallel to each other. This
reduced the operating frequency of the hardware to 1/4th of the original value. Since FPGAs operate at a much slower
frequency than ASICs, the operating frequencies that were found during analysis were too high to implement using standard
FPGAs.
In the table below, comparison of non-shared and shared data workloads is provided. If a 4K resolution image is divided into
4 equal regions, there will be 12 hardware components running in parallel to calculate frame pixels.
However, it was noticed that this addition of hardware components will require extra chip area but will reduce power con-
sumption (due to the reduced operational frequency) and increase the hardware lifetime.

16

Without screen splitting, it was nearly impossible to implement 4K filtering using standard FPGAs but it is possible through
ASIC as shown in the table. On the other hand, by splitting the screen, achievable operation frequencies were seen and it
was possible to implement.
PCR for 100 devices is highest for Reconfigurable computing implementation. For 1000 and 10,000 devices , RCS again
produces the best PCR.

9.1 SPEEDUP CALCULATION

Speed-up of RCS implementation compared to RISC:

SRCS−RISC =
92.06784× 109

248, 832, 240
= 370 times (9.1)

Speed-up of RCS implementation compared to CISC:

SRCS−CISC =
246.841344× 109

248, 832, 240
= 992 times (9.2)

Speed-up of RISC implementation compared to CISC:

SRISC−CISC =
246.841344× 109

92.06784× 109
= 2.6812 ≈ 2.7 times (9.3)

17

18

10 CONCLUSION

Xilinx and Altera are pushing hard to squeeze as many logic blocks as possible onto the provided FPGA die area. The
timing constraints required by 4K video processing and other DSP applications requires the system designer to exploit data
parallelism and instruction parallelism to overcome these constraints and meet required specifications. Instruction parallelism
was used to process complete pixel vector information of the frame.
The two modes of the application were compared with each other and implemented using two different methods. The first
method was to compute the whole frame by using a single hardware processor. The second method involved dividing the
screen into 4 equal regions and a hardware block was assigned to each of these regions running parallel to each other. This
reduced the operating frequency of the hardware to 1/4th of the original value. Since FPGAs operate at a much slower
frequency than ASICs, the operating frequencies that were found during analysis were too high to implement using standard
FPGAs.
The FPGA price, configuration bits, frequency range, logic cells, etc. were gathered from renowned suppliers and data-
sheets. Speed-up of 370 times was found comparing reconfigurable implementation to RISC implementation and 992 times
when comparing reconfigurable implementation to CICS implementation. It was also found that it is not practical to use
RISC or CISC processors like ARM for noise reduction of a 4K video stream.

19

	Project Specifications
	Functional Specifications
	Noise Reduction Mode
	Gray-scale Mode

	Technical Specifications

	RISC/CISC Software Implementation
	Introduction
	Theory
	Sequencing Graph for FIR Filter
	Sequencing Graph for RGB-Gray-scale converter
	Implementation on CISC non-pipelined processor
	Total number of clock cycles for one pixel calculation
	Total number of clock cycles for one frame calculation
	Required Operating frequency for meeting 60fps specification

	Implementation on RISC pipelined processor
	Pipeline Diagram
	Total number of clock cycles for one pixel calculation
	Total number of clock cycles for one frame calculation

	Implementation on statically configured FPGA
	Frequency required on FPGA for non-pipelined implementation

	Frequency required on FPGA for pipelined implementation
	Implementation on dynamically configured FPGA (RCS)

	System Design
	Implementation on CPU
	Implementation on FPGA
	Non-pipelined block diagram of FIR Filter
	Non-pipelined block diagram of RGB to Gray-scale converter
	Pipelined block diagram of FIR Filter
	Pipelined block diagram of RGB to Gray-scale converter
	Optimal Timing diagram of FIR Filter
	Non-optimal Timing diagram of RGB to Gray-scale converter
	Optimal Timing diagram of RGB to Gray-scale converter

	Design
	FIR Component Bandwidth
	RGB to Gray-scale Component Bandwidth

	Comparative Analysis
	Speedup Calculation

	Conclusion

