
LAB & PROJECT
SUMMARIES

COE 718

LAB 1
Introduction to μVision and ARM

Cortex M3

Marks Break-down

Category Marks

Demo 25

Code 25

Total 50

μVision IDE
Integrated Development Environment (IDE) for developing software/firmware in C/C++.

TOOLS/FEATURES
› Performance Analyzer
› Execution Profiling
› Logic Analyzer
› Register Window
› Watch Window

MODES
› Debug Mode

1. Use Simulator
2. Use ULINK ARM Debugger

› Normal Mode

ARM Cortex M3
Advanced RISC Machine (ARM) for embedded applications (M3).

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13 (MSP)
R14
R15
xPSR

R13 (PSP)

General
Purpose
Registers

Main Stack Pointer
Process Stack Pointer

Link Register (LR)
Program Counter (PC)

High Registers

Low Registers

Application Program Status Register

32 - bits

1
1

1

4 9 2
6 1 5 0

6 6 4 2

5 4
1 2 3

RISC Machines
Reduced Instruction Set Computing Machines: Computing machines which need to be fed with
instructions that are broken down into very basic set of operations.

xIntermediate Results

Final Output

Input 1

Input 2

Need Memory!

Registers

+

Compiler
Turns your C/C++ code into assembly while optimizing speed, memory, and performance.

.c

Compiler

.h

.o

Optimization
Settings

Default Use the compiler default .

Level 0 (-O0)
Turn off almost all
optimization.

Level 1 (-O1)
Turn off optimizations that
seriously degrade the
debug view.

Level 2 (-O2)
High optimization (default
level).

Level 3 (-O3)

Maximum optimization.
Note that Level 3 in
combination with Optimize
for Time may generate
more code that Level 2
since it may unroll loops.

LAB 2
Exploring ARM Cortex M3 Features

Marks Break-down

Category Marks

Demo 20

Code 50

Report 30

Total 100

Bit Banding
Allows individual bits in the SRAM and peripheral registers to be read and written to instead of
reading a whole register and masking the desired bits.

STEP 1: Calculate the bit address
STEP A Calculate Byte Offset
STEP B Calculate Bit Band Word Address

STEP 2: Define a Pointer to the address

STEP 3: Assign a Value to the Port Bit
1 #define MY_LED = (*(volatile unsigned long *)0x2318000C)

1 int main(void){

2 ...

3 MY_LED = 1;

4 }

Conditional Execution
ARM allows some instructions to contains conditions within their opcode.

Conditional Method: Non-Conditional Method:

1 CMP R2, #5;
2 BGT t_else;
3 MOV R2, #10;
4 t_else: MOV R2, #1;

1 CMP R2, #5;
2 MOVLE R2, #10;
3 MOVGT R2, #1;

1 if(a <= 5)
2 a = 10;
3 else a = 1;

C Code:
N Z C V

31 30 29 28

PSR

Negative
Zero

Carry

Overflow

Barrel Shifting
Allows shift/rotate the operand before it enters the ALU.

With Barrel Shifting: Without Barrel Shifting:

1 MUL R1, R2, R3;
2 ADD R5, R1, R4;

1 ADD R1, R2, R3 LSL R4;

ALU

<<

R2 R3

R4

R1

R1

ALU

R2 R3

R5

R4

ALU

LAB 3a
Task Scheduling

Marks Break-down

Category Marks

Demo 20

Round Robin Scheduling 20

Preemptive Scheduling 35

Non Preemptive Scheduling 25

Total 100

RTX
RTX is a Real-Time Operating System (RTOS) designed for ARM and Cortex-M devices.

SCHEDULER
Allows and manages execution of multiple
tasks.

MUTEX
Locks access to critical areas of program. It
allows sharing of the same resource, such
as file access, but not simultaneously.

MAILBOX
Allows message passing between tasks for
data exchange or task synchronization.

DELAY & INTERVAL
Accurate delay & Interval functions.

EVENT & SEMAPHORE
Software interrupts (events) and
semaphore for synchronization.

MEMORY POOL
Fixed-size blocks of memory that are
thread-safe. They operate much faster than
the dynamically allocated heap and do not
suffer from fragmentation. Being thread-
safe, they can be accessed from threads
and ISRs alike.

Round-Robin Scheduling
This technique divides processor time equaly into threads ready for execution.

Task 1

Task 2

Task 3

Task 4

Task 5

Tasks Created:

time

Task 1

Task 2Task 5

Task 4 Task 3

>100ms >100ms

>100ms >100ms

>100ms time

Non Pre-emptive Scheduling
Also known as priority-based uninterrupted scheduling

Task 1

Tasks Created:

time

4

Task 2 3

Task 3 5

Task 4 3

Task 5 1

priority

time

Pre-emptive Scheduling
Preempt: To take place of
Threads with same priority share CPU by allowing other thread to take it’s place.

Task 1

Tasks Created:

time

4

Task 2 3

Task 3 5

Task 4 3

Task 5 1

priority

time

os_tsk_pass()

LAB 3b
Multithreading with RTX

Marks Break-down

Category Marks

Demo 20

Report 10

Round Robin Scheduling 20

Preemptive Scheduling 30

Non Preemptive Scheduling 20

Total 100

Thread vs Task
The distinction between a thread and a task is subtle: it is more related to the purpose. A
separate thread is usually thought of performing some operation in parallel, usually with the
intention of the thread joining the parent again; while a task is a separate and parallel
sequence of execution without an intention of joining with the parent.

THREAD
› STEP 1 – FORK: Create threads from a

common context .
› STEP 2 – EXECUTE: Let threads run in

parallel.
› STEP 3– JOIN: After finish execution,

gather data from each thread into one
context.

TASK
› STEP 1 – INITIALIZE: Set initial variables

and parameters.
› STEP 2 – EXECUTE: Let tasks run in

parallel.

Main

Main

Main

LAB 4
Real-time Scheduling

Marks Break-down

Category Marks

Demo 20

Question 1 45

Question 2 35

Total 100

Rate-monotonic Scheduling
Higher priorities are assigned to frequently occurring tasks.
Higher rate = high priority.

Tasks:

Task
Period

(T)
Computation

Time (C)
Priority

(P)

Task 1 8 4 1

Task 2 8 2 2

Task 3 4 1 3

time

Priority Inversion
To lower a priority of a high priority task in case of data or resource dependency.

time

Task A (P = 1)

Task B (P = 2)

Task C (P = 3)

Using R1

Wants to use R1

PROJECT
Media Center

Requirements
› A Photo Gallery
› A mp3 Player
› Game(s)
› Any additional Stuff (Sprites,

Animations, Apps etc.)

Submission Break-down
Category Marks Due Date

Project Summary Report 5 Week 6 (Week of Oct. 10)

Progress Demo 10 Week 9 (Week of Oct. 31)

Interim Report 20 7th November 2016 (Start of Week 10)

Final Demo 30 Week 11 (Week of Nov. 14)

Final Report 25
Week 13 (Week of Nov. 28)

Code 10

Exact Date

Bonus Projects (2-4% bonus marks)
1. Study of MPEG video file format and development of an MPEG decoder

embedded software for an ARM Cortex M3 CPU based MCB1700 den board.
2. Study of MP3 audio encoding and propose a software solution.

Then implement your solution with ARM-Cortex M3 (MCB1700) board based
solution.

3. Model and implement a suitable hardware-software design for a standard
JPEG file encoder/decoder for color images by using a Cyclone IV FPGA
based DE2 board for implementation.

4. Design and implement an embedded system suitable for
a (student) proposed embedded application. The system may consist of
ARM-Cortex M3 (MCB1700 Dev Board), NIOS-II CPU (DE2 board), memory,
serial interface, parallel interface for LCD, etc.

5. Configure a typical embedded computer system on the DE2 board or
MCB1700 and then implement a real-time application based on an RTOS such
as RTX.

Everything we discussed today is
available at:
http://www.obaidtech.com/documents.html

THANKS!
Any questions?
You can find me at:
ENG – 402 · mobaidullah@ryerson.ca

